Cellular generators

Authors:
Wojciech Chachólski, Paul-Eugene Parent and Donald Stanley

Journal:
Proc. Amer. Math. Soc. **132** (2004), 3397-3409

MSC (2000):
Primary 55Q05

DOI:
https://doi.org/10.1090/S0002-9939-04-07346-0

Published electronically:
June 16, 2004

MathSciNet review:
2073317

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this paper is twofold. On the one hand, we show that the kernel of the Bousfield periodization functor is cellularly generated by a space , i.e., we construct a space such that the smallest closed class containing is exactly . On the other hand, we show that the partial order is a complete lattice, where if . Finally, as a corollary we obtain Bousfield's theorem, which states that is a complete lattice, where if .

**1.**A. K. Bousfield,*Localization and periodicity in unstable homotopy theory*, J. Amer. Math. Soc.**7**(1994), no. 4, 831-873. MR**95c:55010****2.**-,*Homotopical localizations of spaces*, Amer. J. Math.**119**(1997), no. 6, 1321-1354. MR**98m:55009****3.**A. K. Bousfield and D. M. Kan,*Homotopy limits, completions and localizations*, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin, 1972. MR**51:1825****4.**Wojciech Chachólski,*Closed classes*, Algebraic topology: New trends in localization and periodicity (Sant Feliu de Guíxols, 1994), Birkhäuser, Basel, 1996, pp. 95-118. MR**97e:55007****5.**-,*On the functors and*, Duke Math. J.**84**(1996), no. 3, 599-631. MR**97i:55023****6.**Krzysztof Ciesielski,*Set theory for the working mathematician*, Cambridge University Press, Cambridge, 1997. MR**99c:04001****7.**Edward B. Curtis,*Simplicial homotopy theory*, Advances in Math.**6**(1971), 107-209 (1971). MR**43:5529****8.**E. Dror Farjoun,*Cellular inequalities*, The Cech centennial (Boston, MA, 1993), Amer. Math. Soc., Providence, RI, 1995, pp. 159-181. MR**96g:55011****9.**-,*Cellular spaces, null spaces and homotopy localization*, Springer-Verlag, Berlin, 1996. MR**98f:55010****10.**Daniel G. Quillen,*Homotopical algebra*, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin, 1967. MR**36:6480**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
55Q05

Retrieve articles in all journals with MSC (2000): 55Q05

Additional Information

**Wojciech Chachólski**

Affiliation:
Yale University, Department of Mathematics, 10 Hillhouse Avenue, P.O. Box 208283, New Haven, Connecticut 06520-8283

Address at time of publication:
KTH Matematik, S-10044 Stockholm, Sweden

Email:
chachols@math.yale.edu

**Paul-Eugene Parent**

Affiliation:
Université catholique de Louvain, Département de mathméatiques, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve, Belgique

Address at time of publication:
KTH Matematik, S-10044 Stockholm, Sweden

Email:
parent@agel.ucl.ac.be

**Donald Stanley**

Affiliation:
University of Alberta, Department of Mathematical Sciences, 632 Central Academic Building, Edmonton, Alberta, T6G 2G1, Canada

Address at time of publication:
Department of Mathematics and Statistics, University of Regina, College West, 30714 Regina, Saskatchewan, Canada

Email:
stanley@math.ualberta.ca

DOI:
https://doi.org/10.1090/S0002-9939-04-07346-0

Received by editor(s):
November 1, 2000

Received by editor(s) in revised form:
January 1, 2001

Published electronically:
June 16, 2004

Additional Notes:
The first author was partially supported by the NSF grant DMS-9803766

This work has been partly supported by the Volkswagenstiftung Oberwolfach

Communicated by:
Paul Goerss

Article copyright:
© Copyright 2004
American Mathematical Society