Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Dense subsets of the boundary of a Coxeter system


Author: Tetsuya Hosaka
Journal: Proc. Amer. Math. Soc. 132 (2004), 3441-3448
MSC (2000): Primary 57M07, 20F65, 20F55
DOI: https://doi.org/10.1090/S0002-9939-04-07480-5
Published electronically: May 12, 2004
Addendum: Proc. Amer. Math. Soc. (133) 2005, 3745-3747
MathSciNet review: 2073322
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we investigate dense subsets of the boundary of a Coxeter system. We show that for a Coxeter system $(W,S)$, if $W^{\{s_0\}}$ is quasi-dense in $W$ and the order $o(s_0t_0)=\infty$ for some $s_0,t_0\in S$, then there exists a point $\alpha$ in the boundary $\partial\Sigma(W,S)$ of the Coxeter system $(W,S)$such that the orbit $W\alpha$ is dense in $\partial\Sigma(W,S)$. Here $W^{\{s_0\}}=\{w\in W\,\vert\,\ell(ws)<\ell(w) \text{for each} s\in S\setminus\{s_0\} \}\setminus \{1\}$. We also show that if the set $\bigcup\{W^{\{s\}}\,\vert\, s\in S \text{such that} o(st)=\infty \text{for some} t\in S\}$ is quasi-dense in $W$, then $\{w^\infty\,\vert\, w\in W \text{such that} o(w)=\infty\}$ is dense in $\partial\Sigma(W,S)$.


References [Enhancements On Off] (What's this?)

  • 1. N. Bourbaki, Groupes et Algebrès de Lie, Chapters IV-VI, Masson, Paris, 1981. MR 39:1590
  • 2. P. L. Bowers and K. Ruane, Fixed points in boundaries of negatively curved groups, Proc. Amer. Math. Soc. 124 (1996), 1311-1313. MR 96g:20052
  • 3. M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, 1999. MR 2000k:53038
  • 4. K. S. Brown, Buildings, Springer-Verlag, 1980. MR 90e:20001
  • 5. M. W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. 117 (1983), 293-324. MR 86d:57025
  • 6. -, Nonpositive curvature and reflection groups, in Handbook of geometric topology (Edited by R. J. Daverman and R. B. Sher), pp. 373-422, North-Holland, Amsterdam, 2002. MR 2002m:53061
  • 7. -, The cohomology of a Coxeter group with group ring coefficients, Duke Math. J. 91 (1998), 297-314. MR 99b:20067
  • 8. E. Ghys and P. de la Harpe (ed), Sur les Groups Hyperboliques d'apres Mikhael Gromov, Progr. Math. vol. 83, Birkhäuser, Boston MA, 1990. MR 92f:53050
  • 9. T. Hosaka, Parabolic subgroups of finite index in Coxeter groups, J. Pure Appl. Algebra 169 (2002), 215-227. MR 2003c:20041
  • 10. J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, 1990. MR 92h:20002
  • 11. G. Moussong, Hyperbolic Coxeter groups, Ph.D. thesis, The Ohio State University, 1988.
  • 12. J. Tits, Le problème des mots dans les groupes de Coxeter, Symposia Mathematica, vol. 1, pp. 175-185, Academic Press, London, 1969. MR 40:7339

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57M07, 20F65, 20F55

Retrieve articles in all journals with MSC (2000): 57M07, 20F65, 20F55


Additional Information

Tetsuya Hosaka
Affiliation: Department of Mathematics, Utsunomiya University, Utsunomiya, 321-8505, Japan
Email: hosaka@cc.utsunomiya-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-04-07480-5
Keywords: Boundaries of Coxeter groups
Received by editor(s): April 15, 2003
Received by editor(s) in revised form: August 4, 2003
Published electronically: May 12, 2004
Additional Notes: The author was partly supported by a Grant-in-Aid for Scientific Research, The Ministry of Education, Culture, Sports, Science and Technology, Japan, (No. 15740029)
Communicated by: Ronald A. Fintushel
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society