An extremal problem of quasiconformal mappings

Authors:
Zhong Li, Shengjian Wu and Zemin Zhou

Journal:
Proc. Amer. Math. Soc. **132** (2004), 3283-3288

MSC (2000):
Primary 30C75, 30C62

DOI:
https://doi.org/10.1090/S0002-9939-04-07485-4

Published electronically:
April 21, 2004

MathSciNet review:
2073303

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, the following problem is studied. Let and be two domains in the complex plane with . Suppose that are two quasiconformal mappings satisfying . Let be the mapping in defined by (). If both and are uniquely extremal, is always uniquely extremal? It is shown in this paper that the answer to this problem is no.

**[Ah]**L. Ahlfors,*Lectures on Quasiconformal Mappings*, Van Nostrand, New York, 1966. MR**34:336****[AH]**M. Anderson and A. Hinkkanen,*Quadrilaterals and extremal quasiconformal extensions*, Comment. Math. Helv.**70**(1995), 455-474. MR**96g:30042****[BLM]**V. Bozin, N. Lakic, V. Markovic and M. Mateljvic,*Unique extremality*, J. Anal. Math.**75**(1998), 299-338. MR**2000a:30045****[CS]**J. Chen and Y. Shen,*Oral communication*.**[LV]**O. Lehto and K. I. Virtanen,*Quasiconformal Mappings in the Plane*, Springer-Verlag, 1973. MR**49:9202****[Ma]**V. Markovic,*Extremal problems for quasiconformal mappings of punctured plane domains*, Trans. Amer. Math. Soc.**354**(2002,) 1631-1650. MR**2002j:30074****[Re]**E. Reich,*Extremal Quasiconformal mapping of the Disk, in the book ``Handbook of Complex Analysis: Geometric function theory, Volume 1"*, Edited by R.Kühnau, Elsevier Science B.V., 2002, pp. 75-135. MR**2004c:30036****[Re1]**E. Reich,*An extremum problem for analytic functions with area norm*, Ann. Acad. Sci. Fenn. Ser. A. I. Math.**2**(1976), 429-445. MR**58:17102****[Re2]**E. Reich,*Uniqueness of Hahn-Banach extensions from certain spaces of analytic functions*, Math. Z.**167**(1979), 81-89. MR**80j:30074****[RS1]**E. Reich and K. Strebel,*On quasiconformal mappings which keep the boundary points fixed*, Trans. Amer. Math. Soc.**138**(1969), 211-222. MR**38:6059****[RS2]**E. Reich and K. Strebel,*Extremal quasiconformal mappings with given boundary values, in the book ``Contributions to Analysis (a collection of papers dedicated to Lipman Bers)"*, Academic Press, 1974, pp. 375-392. MR**50:13511****[RS3]**E. Reich and K. Strebel,*On the extremality of certain Teichmüller mappings*, Comment. Math. Helv.**45**(1970), 353-362. MR**43:514****[Se]**G. C. Sethares,*The extremal property of certain Teichmüller mappings*, Comment. Math. Helv.**43**(1968), 98-119. MR**37:4253****[St]**K. Strebel,*On the extremality and unique extremality of quasiconformal mappings of a parallel strip*, Rev. Roumaine Math. Pures Appl.**32**(1987), 923-928. MR**89f:30042**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
30C75,
30C62

Retrieve articles in all journals with MSC (2000): 30C75, 30C62

Additional Information

**Zhong Li**

Affiliation:
School of Mathematical Sciences, LMAM, Peking University, Beijing 100871, People’s Republic of China

Email:
lizhong@math.pku.edu.cn

**Shengjian Wu**

Affiliation:
School of Mathematical Sciences, LMAM, Peking University, Beijing 100871, People’s Republic of China

Email:
wusj@math.pku.edu.cn

**Zemin Zhou**

Affiliation:
School of Mathematical Sciences, LMAM, Peking University, Beijing 100871, People’s Republic of China

Email:
zeminzhou2000@163.com

DOI:
https://doi.org/10.1090/S0002-9939-04-07485-4

Received by editor(s):
December 3, 2002

Received by editor(s) in revised form:
July 15, 2003

Published electronically:
April 21, 2004

Additional Notes:
The first author was supported by the 973-Project Foundation of China (Grant TG199075105) and the second author was supported by the NNSF of China (Grants 10171003 and 10231040)

Communicated by:
Juha M. Heinonen

Article copyright:
© Copyright 2004
American Mathematical Society