Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Characterizing Cohen-Macaulay local rings by Frobenius maps


Authors: Ryo Takahashi and Yuji Yoshino
Journal: Proc. Amer. Math. Soc. 132 (2004), 3177-3187
MSC (2000): Primary 13A35, 13D05, 13H10
DOI: https://doi.org/10.1090/S0002-9939-04-07525-2
Published electronically: May 12, 2004
MathSciNet review: 2073291
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $R$ be a commutative noetherian local ring of prime characteristic. Denote by ${{}^e\hspace{-1.6pt}{}} R$ the ring $R$ regarded as an $R$-algebra through $e$-times composition of the Frobenius map. Suppose that $R$is F-finite, i.e., ${{}^1\hspace{-2pt}{}} R$ is a finitely generated $R$-module. We prove that $R$ is Cohen-Macaulay if and only if the $R$-modules ${{}^e\hspace{-1.6pt}{}} R$ have finite Cohen-Macaulay dimensions for infinitely many integers $e$.


References [Enhancements On Off] (What's this?)

  • 1. M. AUSLANDER, Anneaux de Gorenstein, et torsion en algèbre commutative, Séminaire d'algèbre commutative dirigé par P. Samuel, Secrétariat mathématique, Paris, 1967. MR 37:1435
  • 2. M. AUSLANDER and M. BRIDGER, Stable module theory, Memoirs of the American Mathematical Society, No. 94, 1969. MR 42:4580
  • 3. L. L. AVRAMOV, Homological dimensions and related invariants of modules over local rings, Proceedings of the 9th International Conference on Representations of Algebras (Beijing, 2000), to appear.
  • 4. L. L. AVRAMOV and H.-B. FOXBY, Homological dimensions of unbounded complexes, J. Pure Appl. Algebra 71 (1991), no. 2-3, 129-155. MR 93g:18017
  • 5. L. L. AVRAMOV, H.-B. FOXBY, and B. HERZOG, Structure of local homomorphisms, J. Algebra 164 (1994), no. 1, 124-145. MR 95f:13029
  • 6. L. L. AVRAMOV, V. N. GASHAROV, and I. V. PEEVA, Complete intersection dimension, Inst. Hautes Études Sci. Publ. Math. No. 86 (1997), 67-114 (1998). MR 99c:13033
  • 7. T. ARAYA, R. TAKAHASHI, and Y. YOSHINO, Homological invariants associated to semi-dualizing bimodules, Preprint 2002.
  • 8. H. BASS, On the ubiquity of Gorenstein rings. Math. Z. 82 (1963), 8-28. MR 27:3669
  • 9. A. BLANCO and J. MAJADAS, Sur les morphismes d'intersection complète en caractéristique $p$, J. Algebra 208 (1998), no. 1, 35-42. MR 99i:13023
  • 10. W. BRUNS and J. HERZOG, Cohen-Macaulay rings, revised version, Cambridge University Press, 1998. MR 95h:13020 (1st ed.)
  • 11. L. W. CHRISTENSEN, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 353 (2001), no. 5, 1839-1883. MR 2002a:13017
  • 12. L. W. CHRISTENSEN, Gorenstein dimensions, Lecture Notes in Mathematics, 1747, Springer-Verlag, Berlin, 2000. MR 2002e:13032
  • 13. H.-B. FOXBY, Gorenstein modules and related modules, Math. Scand. 31 (1972), 267-284 (1973). MR 48:6094
  • 14. A. A. GERKO, On homological dimensions, Mat. Sb. 192 (2001), no. 8, 79-94; translation in Sb. Math. 192 (2001), no. 7-8, 1165-1179. MR 2002h:13024
  • 15. E. S. GOLOD, G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov. 165 (1984), 62-66; English transl., Proc. Steklov Inst. Math. 1985, no. 3 (164), 67-71. MR 85m:13011
  • 16. J. HERZOG, Ringe der Charakteristik $p$ und Frobeniusfunktoren, Math. Z. 140 (1974), 67-78. MR 50:4569
  • 17. J. KOH and K. LEE, New invariants of Noetherian local rings, J. Algebra 235 (2001), no. 2, 431-452. MR 2002a:13022
  • 18. E. KUNZ, Characterizations of regular local rings of characteristic $p$, Amer. J. Math. 91 (1969), 772-784. MR 40:5609
  • 19. V. MASSEK, Gorenstein dimension and torsion of modules over commutative noetherian rings, Comm. Algebra 28 (2000), no. 12, 5783-5811. MR 2001k:13025
  • 20. C. PESKINE and L. SZPIRO, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. No. 42 (1973), 47-119. MR 51:10330
  • 21. A. G. RODICIO, On a result of Avramov, Manuscripta Math. 62 (1988), no. 2, 181-185. MR 89k:13014
  • 22. O. VELICHE, Construction of modules with finite homological dimensions, J. Algebra 250 (2002), no. 2, 427-449. MR 2003e:13023
  • 23. S. YASSEMI, G-dimension, Math. Scand. 77 (1995), no. 2, 161-174. MR 97d:13017

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13A35, 13D05, 13H10

Retrieve articles in all journals with MSC (2000): 13A35, 13D05, 13H10


Additional Information

Ryo Takahashi
Affiliation: Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
Address at time of publication: Faculty of Science, Okayama University, Okayama 700-8530, Japan
Email: takahasi@math.okayama-u.ac.jp

Yuji Yoshino
Affiliation: Faculty of Science, Okayama University, Okayama 700-8530, Japan
Email: yoshino@math.okayama-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-04-07525-2
Keywords: Frobenius map, CM-dimension, G-dimension, flat dimension, injective dimension
Received by editor(s): May 15, 2002
Received by editor(s) in revised form: April 9, 2003, and August 7, 2003
Published electronically: May 12, 2004
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society