Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Boundary regularity in the Dirichlet problem for the invariant Laplacians $\Delta_\gamma$ on the unit real ball


Authors: Congwen Liu and Lizhong Peng
Journal: Proc. Amer. Math. Soc. 132 (2004), 3259-3268
MSC (2000): Primary 35J25, 32W50; Secondary 35C10, 35C15
DOI: https://doi.org/10.1090/S0002-9939-04-07582-3
Published electronically: June 17, 2004
MathSciNet review: 2073300
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the boundary regularity in the Dirichlet problem of the differential operators

\begin{displaymath}\Delta_{\gamma}= (1-\vert x\vert^2)\bigg\{ \frac {1-\vert x\v... ...}{\partial x_j} + \gamma\Big(\frac n2 -1 -\gamma \Big)\bigg\}. \end{displaymath}

Our main result is: if $\gamma>-1/2$ is neither an integer nor a half-integer not less than $n/2-1$, one cannot expect global smooth solutions of $\Delta_\gamma u=0$; if $u\in C^{\infty}(\overline{B}_n)$ satisfies $\Delta_\gamma u=0$, then $u$ must be either a polynomial of degree at most $2\gamma+2-n$ or a polyharmonic function of degree $\gamma+1$.


References [Enhancements On Off] (What's this?)

  • 1. P. Ahern, J. Bruna, and C. Cascante, $H^p$-theory for generalized $M$-harmonic functions in the unit ball, Indiana Univ. Math. J. 45 (1996), 103-135. MR 98f:32008
  • 2. L. V. Ahlfors, Möbius Transformations in Several Dimensions, University of Minnesota, 1981. MR 84m:30028
  • 3. Ö. Akin and H. Leutwiler, On the invariance of the solutions of the Weinstein equation under Möbius transformations, Classical and Modern Potential Theory and Applications (K. GowriSankaran et al, ed.), Kluwer Academic Publisher, Dordrecht, 1994, pp. 19-29. MR 96k:31008
  • 4. N. Aronszajn, T. M. Creese, and L. J. Lipkin, Polyharmonic Functions, Clarendon Press, Oxford, 1983. MR 86g:31001
  • 5. A. Boussejra and A. Intissar, $L^2$-concrete spectral analysis of the invariant Laplacian $\Delta_{\alpha,\beta}$ in the unit complex ball $B^n$, J. Funct. Anal., 160 (1998), 115-140. MR 2000a:35183
  • 6. A. Erdélyi, Higher Transcendental Functions, vol. 1, McGraw-Hill, 1953. MR 15:419i
  • 7. G. B. Folland, Spherical harmonic expansion of the Poisson-Szegö kernel for the ball, Proc. Amer. Math. Soc. 47 (1975), 401-408. MR 51:6273
  • 8. D. Geller, Some results in $H^p$ theory for the Heisenberg group, Duke Math. J. 47 (1980), 365-390. MR 81j:32009
  • 9. C. R. Graham, The Dirichlet problem for the Bergman Laplacian. I, Comm. Partial Differential Equations 8 (1983), 433-476. MR 85b:35019
  • 10. C. R. Graham and J. M. Lee, Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke Math. J. 57(1988), 697-720. MR 90c:32031
  • 11. S. G. Krantz, Partial Differential Equations and Complex Analysis, CRC Press, Boca Raton, Florida, 1992. MR 94a:35002
  • 12. H. Leutwiler, Best constants in the Harnack inequality for the Weinstein equation, Aequationes Mathematicae 34 (1987), 304-315. MR 88m:35040
  • 13. S-Y. Li and E. Simon, Boundary behavior of harmonic functions in metrics of Bergman type on the polydisc, Amer. J. Math. 124 (2002), 1045-1057. MR 2003h:32009
  • 14. C. Liu and L. Peng, Berezin-type transforms associated with the Weinstein equation, in preparation.
  • 15. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed., Springer-Verlag, Berlin/Heidelberg, 1966. MR 38:1291
  • 16. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970. MR 44:7280
  • 17. A. Weinstein, Generalized axially symmetric potential theory, Bull. Amer. Math. Soc. 59 (1953), 20-38. MR 14:749c

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35J25, 32W50, 35C10, 35C15

Retrieve articles in all journals with MSC (2000): 35J25, 32W50, 35C10, 35C15


Additional Information

Congwen Liu
Affiliation: School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
Address at time of publication: School of Mathematical Sciences, Nankai University, Tianjin 300071, People’s Republic of China
Email: cwliu@math.pku.edu.cn

Lizhong Peng
Affiliation: School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
Email: lzpeng@pku.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-04-07582-3
Keywords: Invariant Laplacians, Laplace-Beltrami operator, Weinstein equation, boundary regularity, polyharmonicity
Received by editor(s): July 4, 2003
Published electronically: June 17, 2004
Additional Notes: This research was supported by 973 project of China grant G1999075105
Communicated by: Mei-Chi Shaw
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society