Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the homotopy type of Eschenburg spaces with positive sectional curvature


Authors: L. Astey, E. Micha and G. Pastor
Journal: Proc. Amer. Math. Soc. 132 (2004), 3725-3729
MSC (2000): Primary 53C20, 53C25, 57N65; Secondary 57R55
DOI: https://doi.org/10.1090/S0002-9939-04-07371-X
Published electronically: July 12, 2004
MathSciNet review: 2084097
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A rigidity theorem is proved for principal Eschenburg spaces of positive sectional curvature. It is shown that for a very large class of such spaces the homotopy type determines the diffeomorphism type.


References [Enhancements On Off] (What's this?)

  • 1. L. Astey, E. Micha and G. Pastor, Homeomorphism and diffeomorphism types of Eschenburg spaces. Differential Geom. Appl. 7 (1997), 41-50. MR 98h:53072
  • 2. J. H. Eschenburg, New examples of manifolds with strictly positive curvature. Invent. Math. 66 (1982), 469-480. MR 83i:53061
  • 3. J. H. Eschenburg, Cohomology of biquotients. Manuscripta Math. 75 (1992), 151-166. MR 93e:57070
  • 4. J. H. Eschenburg, Inhomogeneous spaces of positive curvature. Differential Geom. Appl. 2 (1992), 123-132. MR 94j:53044
  • 5. B. Kruggel, A homotopy classification of certain $7$ manifolds. Trans. Amer. Math. Soc. 349 (1997), 2827-2843. MR 97m:55012
  • 6. J. Milgram, The classification of Aloff-Wallach manifolds and their generalizations. Surveys on surgery theory, Vol 1. Annals of Math. Studies 145 (2000), 379-407. MR 2000m:57056
  • 7. I. Niven, H. Zuckerman and H. Montgomery, An introduction to the theory of numbers. 5th edition, John Wiley and Sons, New York, 1991. MR 91i:11001
  • 8. K. Shankar, Strong inhomogeneity of Eschenburg spaces (with an Appendix by Mark Dickinson and Krishnan Shankar). Mich. Math. J. 50 (2002), 125-141. MR 2003g:53042
  • 9. H. Stark, An introduction to number theory. MIT Press, Cambridge, Mass., 1978. MR 80a:10001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C20, 53C25, 57N65, 57R55

Retrieve articles in all journals with MSC (2000): 53C20, 53C25, 57N65, 57R55


Additional Information

L. Astey
Affiliation: Departamento de Matemáticas, Centro de Investigación y Estudios Avanzados del IPN, Apartado Postal 14-740, México D.F. 07000
Email: lastey@math.cinvestav.mx

E. Micha
Affiliation: Departamento de Matemáticas, Centro de Investigación y Estudios Avanzados del IPN, Apartado Postal 14-740, México D.F. 07000
Email: emicha@math.cinvestav.mx

G. Pastor
Affiliation: Instituto Tecnológico Autónomo de México (ITAM), Río Hondo No. 1, San Angel, México D.F. 01000
Email: pastor@itam.mx

DOI: https://doi.org/10.1090/S0002-9939-04-07371-X
Keywords: Eschenburg spaces, homotopy types, diffeomorphism types
Received by editor(s): March 17, 2003
Received by editor(s) in revised form: June 12, 2003
Published electronically: July 12, 2004
Additional Notes: Research supported by Conacyt grant 28783E and by Asociación Mexicana de Cultura, A.C
Communicated by: Jon G. Wolfson
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society