Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Infinite systems of linear equations for real analytic functions

Authors: P. Domanski and D. Vogt
Journal: Proc. Amer. Math. Soc. 132 (2004), 3607-3614
MSC (2000): Primary 46E10; Secondary 46A13, 26E05, 46F15
Published electronically: July 20, 2004
MathSciNet review: 2084083
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the problem when an infinite system of linear functional equations

\begin{displaymath}\mu_n(f)=b_n\quad\text{for }n\in\mathbb{N}\end{displaymath}

has a real analytic solution $f$ on $\omega\subseteq\mathbb{R} ^d$ for every right-hand side $(b_n)_{n\in\mathbb{N} }\subseteq\mathbb{C} $ and give a complete characterization of such sequences of analytic functionals $(\mu_n)$. We also show that every open set $\omega\subseteq\mathbb{R} ^d$ has a complex neighbourhood $\Omega\subseteq\mathbb{C} ^d$ such that the positive answer is equivalent to the positive answer for the analogous question with solutions holomorphic on $\Omega$.

References [Enhancements On Off] (What's this?)

  • 1. S. Banach, Théorie des Opérations Linéaires, Monografie Matematyczne, vol. 1, Warszawa, 1932.
  • 2. José Bonet, Paweł Domański, and Dietmar Vogt, Interpolation of vector-valued real analytic functions, J. London Math. Soc. (2) 66 (2002), no. 2, 407–420. MR 1920411, 10.1112/S0024610702003551
  • 3. Henri Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France 85 (1957), 77–99 (French). MR 0094830
  • 4. P. Domanski, L. Frerick, D. Vogt, Fréchet quotients of spaces of real analytic functions, Studia Math. 159 (2003), 229-245.
  • 5. Paweł Domański and Michael Langenbruch, Composition operators on spaces of real analytic functions, Math. Nachr. 254/255 (2003), 68–86. MR 1983956, 10.1002/mana.200310053
  • 6. P. Domański and D. Vogt, A splitting theory for the space of distributions, Studia Math. 140 (2000), no. 1, 57–77. MR 1763882
  • 7. Paweł Domański and Dietmar Vogt, The space of real-analytic functions has no basis, Studia Math. 142 (2000), no. 2, 187–200. MR 1792604
  • 8. -, A non-trivial Fréchet quotient of the space of real analytic functions, Arch. Math. 81 (2003), 208-214.
  • 9. M. Eidelheit, Zur Theorie der Systeme linearer Gleichungen, Studia Math. 6 (1936), 139-148.
  • 10. Hans Grauert, On Levi’s problem and the imbedding of real-analytic manifolds, Ann. of Math. (2) 68 (1958), 460–472. MR 0098847
  • 11. Francesco Guaraldo, Patrizia Macrì, and Alessandro Tancredi, Topics on real analytic spaces, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1986. MR 1013362
  • 12. Gottfried Köthe, Topological vector spaces. I, Translated from the German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York Inc., New York, 1969. MR 0248498
  • 13. Steven G. Krantz, Function theory of several complex variables, John Wiley & Sons, Inc., New York, 1982. Pure and Applied Mathematics; A Wiley-Interscience Publication. MR 635928
  • 14. Michael Langenbruch, Analytic extension of smooth functions, Results Math. 36 (1999), no. 3-4, 281–296. MR 1726219, 10.1007/BF03322117
  • 15. André Martineau, Sur les fonctionnnelles analytiques et la transformation de Fourier-Borel, J. Analyse Math. 11 (1963), 1–164 (French). MR 0159220
  • 16. A. Martineau, Sur la topologie des espaces de fonctions holomorphes, Math. Ann. 163 (1966), 62–88 (French). MR 0190697
  • 17. Reinhold Meise and Dietmar Vogt, Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2, The Clarendon Press, Oxford University Press, New York, 1997. Translated from the German by M. S. Ramanujan and revised by the authors. MR 1483073
  • 18. B. S. Mitjagin, Approximate dimension and bases in nuclear spaces, Uspehi Mat. Nauk 16 (1961), no. 4 (100), 63–132 (Russian). MR 0152865
  • 19. Pierre Schapira, Théorie des hyperfonctions, Lecture Notes in Mathematics, Vol. 126, Springer-Verlag, Berlin-New York, 1970 (French). MR 0631543
  • 20. Dietmar Vogt, Kernels of Eidelheit matrices and related topics, Proceedings of the functional analysis conference (Silivri/Istanbul, 1985), 1986, pp. 232–256 (English, with Turkish summary). MR 872881
  • 21. Dietmar Vogt, On two problems of Mityagin, Math. Nachr. 141 (1989), 13–25. MR 1014410, 10.1002/mana.19891410103
  • 22. D. Vogt, Kernels of power series matrices, Trudy Mat. Inst. Steklov. 203 (1994), no. Izbran. Voprosy Mat. Fiz. i Anal., 461–468; English transl., Proc. Steklov Inst. Math. 3 (203) (1995), 377–381. MR 1382621
  • 23. Kôsaku Yosida, Functional analysis, 4th ed., Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 123. MR 0350358

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46E10, 46A13, 26E05, 46F15

Retrieve articles in all journals with MSC (2000): 46E10, 46A13, 26E05, 46F15

Additional Information

P. Domanski
Affiliation: Faculty of Mathematics and Computer Science, A. Mickiewicz University Poznań and Institute of Mathematics, Polish Academy of Sciences (Poznań branch), ul. Umultowska 87, 61-614 Poznań, Poland

D. Vogt
Affiliation: Bergische Universität Wuppertal, FB Mathematik, Gaußstr. 20, D–42097 Wuppertal, Germany

Keywords: Space of real analytic functions, analytic functionals, interpolation of real analytic functions, Eidelheit sequence
Received by editor(s): January 28, 2003
Received by editor(s) in revised form: May 22, 2003, and July 9, 2003
Published electronically: July 20, 2004
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2004 American Mathematical Society