Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Infinite systems of linear equations for real analytic functions


Authors: P. Domanski and D. Vogt
Journal: Proc. Amer. Math. Soc. 132 (2004), 3607-3614
MSC (2000): Primary 46E10; Secondary 46A13, 26E05, 46F15
DOI: https://doi.org/10.1090/S0002-9939-04-07435-0
Published electronically: July 20, 2004
MathSciNet review: 2084083
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the problem when an infinite system of linear functional equations

\begin{displaymath}\mu_n(f)=b_n\quad\text{for }n\in\mathbb{N}\end{displaymath}

has a real analytic solution $f$ on $\omega\subseteq\mathbb{R} ^d$ for every right-hand side $(b_n)_{n\in\mathbb{N} }\subseteq\mathbb{C} $ and give a complete characterization of such sequences of analytic functionals $(\mu_n)$. We also show that every open set $\omega\subseteq\mathbb{R} ^d$ has a complex neighbourhood $\Omega\subseteq\mathbb{C} ^d$ such that the positive answer is equivalent to the positive answer for the analogous question with solutions holomorphic on $\Omega$.


References [Enhancements On Off] (What's this?)

  • 1. S. Banach, Théorie des Opérations Linéaires, Monografie Matematyczne, vol. 1, Warszawa, 1932.
  • 2. J. Bonet, P. Domanski, D. Vogt, Interpolation of vector valued real analytic functions, J. London Math. Soc. 66 (2002), 407-420. MR 2003h:46056
  • 3. H. Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France 85 (1957), 77-99. MR 20:1339
  • 4. P. Domanski, L. Frerick, D. Vogt, Fréchet quotients of spaces of real analytic functions, Studia Math. 159 (2003), 229-245.
  • 5. P. Domanski, M. Langenbruch, Composition operators on spaces of real analytic functions, Math. Nach. 254-255 (2003), 68-86. MR 2004c:46036
  • 6. P. Domanski, D. Vogt, A splitting theory for the space of distributions, Studia Math. 140 (2000), 57-77. MR 2001e:46125
  • 7. -, The space of real analytic functions has no basis, Studia Math. 142 (2000), 187-200. MR 2001m:46044
  • 8. -, A non-trivial Fréchet quotient of the space of real analytic functions, Arch. Math. 81 (2003), 208-214.
  • 9. M. Eidelheit, Zur Theorie der Systeme linearer Gleichungen, Studia Math. 6 (1936), 139-148.
  • 10. H. Grauert, On Levi's problem and the imbedding of real analytic manifolds, Ann. of Math. 68 (1958), 460-472. MR 20:5299
  • 11. F. Guaraldo, P. Macri, A. Tancredi, Topics on Real Analytic Spaces, Vieweg, Braunschweig, 1986. MR 90j:32001
  • 12. G. Köthe, Topological Vector Spaces, vols. I and II, Springer, Berlin, 1969. MR 40:1750
  • 13. S. Krantz, Function Theory of Several Complex Variables, Wiley, New York, 1982. MR 84c:32001
  • 14. M. Langenbruch, Analytic extension of smooth functions, Results Math. 36 (1999), 281-296. MR 2000i:46026
  • 15. A. Martineau, Sur les fonctionelles analytiques et la transformation de Fourier-Borel, J. Analyse Math. 11 (1963), 1-164. MR 28:2437
  • 16. -, Sur la topologie des espaces de fonctions holomorphes, Math. Ann. 163 (1966), 62-88. MR 32:8109
  • 17. R. Meise, D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford, 1997. MR 98g:46001
  • 18. B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Uspekhi Mat. Nauk 16 (1961), 63-132 (Russian); English transl.: Russian Math. Surveys 16 (1961), 59-128. MR 27:2837
  • 19. P. Schapira, Théorie des Hyperfunctions, Lecture Notes in Mathematics 126, Springer-Verlag, Berlin-Heidelberg-New York, 1970 MR 58:30195
  • 20. D. Vogt, Kernels of Eidelheit matrices and related topics, Proc. Intern. Symp. Funct. Anal., Silivri 1985, Doga Tr. J. 10 (1986), 232-256. MR 88i:46020
  • 21. -, On two problems of Mityagin, Math. Nachr. 141 (1989), 13-25. MR 90h:46018
  • 22. -, Kernels of power series matrices, Trudy Math. Inst. Steklov 203 (1995), 377-381; Proc. Steklov Inst. Math. 3 (1995), 377-381. MR 97d:46003
  • 23. K. Yosida, Functional Analysis, Springer, Berlin, 1974. MR 50:2851

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46E10, 46A13, 26E05, 46F15

Retrieve articles in all journals with MSC (2000): 46E10, 46A13, 26E05, 46F15


Additional Information

P. Domanski
Affiliation: Faculty of Mathematics and Computer Science, A. Mickiewicz University Poznań and Institute of Mathematics, Polish Academy of Sciences (Poznań branch), ul. Umultowska 87, 61-614 Poznań, Poland
Email: domanski@amu.edu.pl

D. Vogt
Affiliation: Bergische Universität Wuppertal, FB Mathematik, Gaußstr. 20, D–42097 Wuppertal, Germany
Email: dvogt@math.uni-wuppertal.de

DOI: https://doi.org/10.1090/S0002-9939-04-07435-0
Keywords: Space of real analytic functions, analytic functionals, interpolation of real analytic functions, Eidelheit sequence
Received by editor(s): January 28, 2003
Received by editor(s) in revised form: May 22, 2003, and July 9, 2003
Published electronically: July 20, 2004
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society