Fixed points and stability of a nonconvolution equation

Author:
T. A. Burton

Journal:
Proc. Amer. Math. Soc. **132** (2004), 3679-3687

MSC (2000):
Primary 34K20, 47H10

Published electronically:
May 12, 2004

MathSciNet review:
2084091

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we consider an equation of the form

and give conditions on and to ensure that the zero solution is asymptotically stable. When applied to the classical case of , these conditions do not require that , nor do they involve the sign of or the sign of any derivative of .

**1.**T. A. Burton and W. E. Mahfoud,*Stability criteria for Volterra equations*, Trans. Amer. Math. Soc.**279**(1983), no. 1, 143–174. MR**704607**, 10.1090/S0002-9947-1983-0704607-8**2.**F. H. Brownell and W. K. Ergen,*A theorem on rearrangements and its application to certain delay differential equations*, J. Rational Mech. Anal.**3**(1954), 565–579. MR**0067342****3.**Jack K. Hale,*Sufficient conditions for stability and instability of autonomous functional-differential equations*, J. Differential Equations**1**(1965), 452–482. MR**0183938****4.**Hale, Jack,*Dynamical systems and stability*, J. Math. Anal. Appl.**26**(1969), 39-59.**5.**Jack Hale,*Theory of functional differential equations*, 2nd ed., Springer-Verlag, New York-Heidelberg, 1977. Applied Mathematical Sciences, Vol. 3. MR**0508721****6.**N. N. Krasovskiĭ,*Stability of motion. Applications of Lyapunov’s second method to differential systems and equations with delay*, Translated by J. L. Brenner, Stanford University Press, Stanford, Calif., 1963. MR**0147744****7.**J. J. Levin,*The asymptotic behavior of the solution of a Volterra equation*, Proc. Amer. Math. Soc.**14**(1963), 534–541. MR**0152852**, 10.1090/S0002-9939-1963-0152852-8**8.**J. J. Levin,*A nonlinear Volterra equation not of convolution type*, J. Differential Equations**4**(1968), 176–186. MR**0225117****9.**J. J. Levin and J. A. Nohel,*On a nonlinear delay equation*, J. Math. Anal. Appl.**8**(1964), 31–44. MR**0163142****10.**John A. Nohel,*A class of nonlinear delay differential equations*, J. Math. and Phys.**38**(1959/1960), 295–311. MR**0114104****11.**Volterra, V.,*Sur la théorie mathématique des phénomènes héréditaires*, J. Math. Pures Appl.**7**(1928), 249-298.**12.**Taro Yoshizawa,*Stability theory by Liapunov’s second method*, Publications of the Mathematical Society of Japan, No. 9, The Mathematical Society of Japan, Tokyo, 1966. MR**0208086**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
34K20,
47H10

Retrieve articles in all journals with MSC (2000): 34K20, 47H10

Additional Information

**T. A. Burton**

Affiliation:
Northwest Research Institute, 732 Caroline St., Port Angeles, Washington 98362

Email:
taburton@olypen.com

DOI:
http://dx.doi.org/10.1090/S0002-9939-04-07497-0

Keywords:
Delay equations,
fixed points,
stability

Received by editor(s):
July 8, 2003

Received by editor(s) in revised form:
September 3, 2003

Published electronically:
May 12, 2004

Communicated by:
Carmen C. Chicone

Article copyright:
© Copyright 2004
American Mathematical Society