Consecutive cancellations in Betti numbers
Author:
Irena Peeva
Journal:
Proc. Amer. Math. Soc. 132 (2004), 35033507
MSC (2000):
Primary 13D02
Published electronically:
July 26, 2004
MathSciNet review:
2084070
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a homogeneous ideal in a polynomial ring over a field. By Macaulay's Theorem, there exists a lexicographic ideal with the same Hilbert function as . We prove that the graded Betti numbers of are obtained from those of by a sequence of consecutive cancellations.
 [Ba]
D. Bayer: The division algorithm and the Hilbert scheme, Ph.D. Thesis, Harvard University, 1982.
 [Ei]
David
Eisenbud, Commutative algebra, Graduate Texts in Mathematics,
vol. 150, SpringerVerlag, New York, 1995. With a view toward
algebraic geometry. MR 1322960
(97a:13001)
 [EK]
Shalom
Eliahou and Michel
Kervaire, Minimal resolutions of some monomial ideals, J.
Algebra 129 (1990), no. 1, 1–25. MR 1037391
(91b:13019), http://dx.doi.org/10.1016/00218693(90)90237I
 [ER]
E.
Graham Evans Jr. and Benjamin
P. Richert, Possible resolutions for a given Hilbert function,
Comm. Algebra 30 (2002), no. 2, 897–906. MR 1883032
(2002k:13024), http://dx.doi.org/10.1081/AGB120013189
 [GHMS]
A. Geramita. T. Harima, J. Migliore, and Y. Shin: Some remarks on the Hilbert functions of level algebras, preprint.
 [GHS1]
Anthony
V. Geramita, Tadahito
Harima, and Yong
Su Shin, An alternative to the Hilbert function for the ideal of a
finite set of points in ℙⁿ, Illinois J. Math.
45 (2001), no. 1, 1–23. MR 1849983
(2002g:13004)
 [GHS2]
Anthony
V. Geramita, Tadahito
Harima, and Yong
Su Shin, Decompositions of the Hilbert function of a set of points
in ℙⁿ, Canad. J. Math. 53 (2001),
no. 5, 923–943. MR 1859762
(2002i:13019), http://dx.doi.org/10.4153/CJM20010373
 [Ha]
Robin
Hartshorne, Connectedness of the Hilbert scheme, Inst. Hautes
Études Sci. Publ. Math. 29 (1966), 5–48. MR 0213368
(35 #4232)
 [Ma]
F. Macaulay: Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531555.
 [Pa]
Keith
Pardue, Deformation classes of graded modules and maximal Betti
numbers, Illinois J. Math. 40 (1996), no. 4,
564–585. MR 1415019
(97g:13029)
 [Ri]
Benjamin
P. Richert, Smallest graded Betti numbers, J. Algebra
244 (2001), no. 1, 236–259. MR 1856536
(2002g:13024), http://dx.doi.org/10.1006/jabr.2001.8878
 [Ba]
 D. Bayer: The division algorithm and the Hilbert scheme, Ph.D. Thesis, Harvard University, 1982.
 [Ei]
 D. Eisenbud: Commutative Algebra with a View Towards Algebraic Geometry, SpringerVerlag, New York, 1995. MR 97a:13001
 [EK]
 S. Eliahou and M. Kervaire: Minimal resolutions of some monomial ideals, J. Algebra, 129 (1990), 125. MR 91b:13019
 [ER]
 G. Evans and B. Richert: Possible resolutions for a given Hilbert function, Communications in Algebra 30 (2002), 897906. MR 2002k:13024
 [GHMS]
 A. Geramita. T. Harima, J. Migliore, and Y. Shin: Some remarks on the Hilbert functions of level algebras, preprint.
 [GHS1]
 A. Geramita. T. Harima, and Y. Shin: An alternative to the Hilbert function for the ideal of a finite set of points in , Illinois J. Math. 45 (2001), 123. MR 2002g:13004
 [GHS2]
 A. Geramita. T. Harima, and Y. Shin: Decompositions of the Hilbert function of a set of points in , Canad. J. Math. 53 (2001), 923943. MR 2002i:13019
 [Ha]
 R. Hartshorne: Connectedness of the Hilbert scheme, Publications Mathématiques IHES 29 (1966), 548. MR 35:4232
 [Ma]
 F. Macaulay: Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531555.
 [Pa]
 K. Pardue: Deformation classes of graded modules and maximal Betti numbers, Illinois J. Math. 40 (1996), 564585. MR 97g:13029
 [Ri]
 B. Richert: Smallest graded Betti numbers, J. Algebra 244 (2001), 236259.MR 2002g:13024
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
13D02
Retrieve articles in all journals
with MSC (2000):
13D02
Additional Information
Irena Peeva
Affiliation:
Department of Mathematics, Cornell University, Ithaca, New York 14853
DOI:
http://dx.doi.org/10.1090/S0002993904075173
PII:
S 00029939(04)075173
Keywords:
Syzygies
Received by editor(s):
November 21, 2002
Received by editor(s) in revised form:
August 25, 2003
Published electronically:
July 26, 2004
Communicated by:
Michael Stillman
Article copyright:
© Copyright 2004 American Mathematical Society
