Consecutive cancellations in Betti numbers

Author:
Irena Peeva

Journal:
Proc. Amer. Math. Soc. **132** (2004), 3503-3507

MSC (2000):
Primary 13D02

DOI:
https://doi.org/10.1090/S0002-9939-04-07517-3

Published electronically:
July 26, 2004

MathSciNet review:
2084070

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a homogeneous ideal in a polynomial ring over a field. By Macaulay's Theorem, there exists a lexicographic ideal with the same Hilbert function as . We prove that the graded Betti numbers of are obtained from those of by a sequence of consecutive cancellations.

**[Ba]**D. Bayer:*The division algorithm and the Hilbert scheme*, Ph.D. Thesis, Harvard University, 1982.**[Ei]**D. Eisenbud:*Commutative Algebra with a View Towards Algebraic Geometry*, Springer-Verlag, New York, 1995. MR**97a:13001****[EK]**S. Eliahou and M. Kervaire:*Minimal resolutions of some monomial ideals*, J. Algebra,**129**(1990), 1-25. MR**91b:13019****[ER]**G. Evans and B. Richert:*Possible resolutions for a given Hilbert function*, Communications in Algebra**30**(2002), 897-906. MR**2002k:13024****[GHMS]**A. Geramita. T. Harima, J. Migliore, and Y. Shin:*Some remarks on the Hilbert functions of level algebras*, preprint.**[GHS1]**A. Geramita. T. Harima, and Y. Shin:*An alternative to the Hilbert function for the ideal of a finite set of points in*, Illinois J. Math.**45**(2001), 1-23. MR**2002g:13004****[GHS2]**A. Geramita. T. Harima, and Y. Shin:*Decompositions of the Hilbert function of a set of points in*, Canad. J. Math.**53**(2001), 923-943. MR**2002i:13019****[Ha]**R. Hartshorne:*Connectedness of the Hilbert scheme*, Publications Mathématiques IHES**29**(1966), 5-48. MR**35:4232****[Ma]**F. Macaulay:*Some properties of enumeration in the theory of modular systems*, Proc. London Math. Soc.**26**(1927), 531-555.**[Pa]**K. Pardue:*Deformation classes of graded modules and maximal Betti numbers*, Illinois J. Math.**40**(1996), 564-585. MR**97g:13029****[Ri]**B. Richert:*Smallest graded Betti numbers*, J. Algebra**244**(2001), 236-259.MR**2002g:13024**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
13D02

Retrieve articles in all journals with MSC (2000): 13D02

Additional Information

**Irena Peeva**

Affiliation:
Department of Mathematics, Cornell University, Ithaca, New York 14853

DOI:
https://doi.org/10.1090/S0002-9939-04-07517-3

Keywords:
Syzygies

Received by editor(s):
November 21, 2002

Received by editor(s) in revised form:
August 25, 2003

Published electronically:
July 26, 2004

Communicated by:
Michael Stillman

Article copyright:
© Copyright 2004
American Mathematical Society