Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Closed similarity Lorentzian affine manifolds


Author: Tsemo Aristide
Journal: Proc. Amer. Math. Soc. 132 (2004), 3697-3702
MSC (2000): Primary 53C30, 53C50
DOI: https://doi.org/10.1090/S0002-9939-04-07560-4
Published electronically: July 22, 2004
MathSciNet review: 2084093
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A $Sim(n-1,1)$ affine manifold is an $n$-dimensional affine manifold whose linear holonomy lies in the similarity Lorentzian group but not in the Lorentzian group. In this paper, we show that a compact $Sim(n-1,1)$ affine manifold is incomplete. Let $\langle,\rangle_L$be the Lorentz form, and $q$ the map on ${\mathbb R}^n$ defined by $q(x)=\langle x,x\rangle_L$. We show that for a compact radiant $Sim(n-1,1)$affine manifold $M$, if a connected component $C$ of ${\mathbb R}^n-q^{-1}(0)$ intersects the image of the universal cover of $M$ by the developing map, then either $C$ or a connected component of $C-H$, where $H$ is a hyperplane, is contained in this image.


References [Enhancements On Off] (What's this?)

  • [Car] Carrière, Y. Autour de la conjecture de L. Markus sur les variétés affines. Invent. Math. 95, (1989) 615-628. MR 89m:53116
  • [Fr] Fried, D. Closed similarity manifolds. Comment. Math. Helvetici 55, (1980) 576-582. MR 83e:53049
  • [FGH] Fried, D. Goldman, W. Hirsch, M. Affine manifolds with nilpotent holonomy. Comment. Math. Helvetici 56, (1981) 487-523. MR 83h:53062
  • [God] Godbillon, C. Feuilletages, études géométriques, I. Progress. in Math., vol. 98 (1991). MR 93i:57038
  • [Gol] Goldman, W. Projective structures with Fuchsian holonomy. J. Differential Geometry 25, (1987) 297-326. MR 88i:57006
  • [Kos] Koszul, J-L. Variétés localement plates et convexité. Osaka J. Math. 2, (1965) 285-290. MR 33:4849
  • [T] Tsemo, A. Thèse Université de Montpellier II, (1999).
  • [Wo] Wolf, J. Spaces of constant curvature. McGraw-Hill, 1967. MR 36:829

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C30, 53C50

Retrieve articles in all journals with MSC (2000): 53C30, 53C50


Additional Information

Tsemo Aristide
Affiliation: The International Center for Theoretical Physics, Strada Costiera, 11, Trieste, Italy
Address at time of publication: 3738, Avenue de Laval, Appt. 106, Montreal, Canada H2X 3C9
Email: tsemoaristide@hotmail.com

DOI: https://doi.org/10.1090/S0002-9939-04-07560-4
Received by editor(s): April 28, 2001
Published electronically: July 22, 2004
Communicated by: Ronald A. Fintushel
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society