LOCAL COHOMOLOGY MODULES WITH INFINITE DIMENSIONAL SOCLES

THOMAS MARLEY AND JANET C. VASSILEV

(Communicated by Bernd Ulrich)

Abstract. In this paper we prove the following generalization of a result of Hartshorne: Let T be a commutative Noetherian local ring of dimension at least two, $R = T[x_1, \ldots, x_n]$, and $I = (x_1, \ldots, x_n)$. Let f be a homogeneous element of R such that the coefficients of f form a system of parameters for T. Then the socle of $H^1_I(R/fR)$ is infinite dimensional.

1. Introduction

The third of Huneke’s four problems in local cohomology \cite{Hu} is to determine when $H^i_I(M)$ is Artinian for a given ideal I of a commutative Noetherian local ring R and finitely generated R-module M. A R-module N is Artinian if and only if $\text{Supp}_R N \subseteq \{m\}$ and $\text{Hom}_R(R/m, N)$ is finitely generated, where m is the maximal ideal of R. Thus, Huneke’s problem may be separated into two subproblems:

- When is $\text{Supp}_R H^1_I(M) \subseteq \{m\}$?
- When is $\text{Hom}_R(R/m, H^1_I(M))$ finitely generated?

This article is concerned with the second question. For an R-module N, one may identify $\text{Hom}_R(R/m, N)$ with the submodule $\{x \in N \mid mx = 0\}$, which is an R/m-vector space called the socle of N (denoted $\text{soc}_R N$). It is known that if R is an unramified regular local ring, then the local cohomology modules $H^i_I(R)$ have finite dimensional socles for all $i \geq 0$ and all ideals I of R (\cite{HS}, \cite{Li}, \cite{L2}).

The first example of a local cohomology module with an infinite dimensional socle was given in 1970 by Hartshorne \cite{Ha}: Let k be a field, $R = k[[u, v]][x, y]$, $P = (u, v, x, y)R$, $I = (x, y)R$, and $f = ux + vy$. Then $\text{soc}_{R_P} H^2_{I_P}(R_P/fR_P)$ is infinite dimensional. Of course, since I and f are homogeneous, this is equivalent to saying that $\text{Hom}_R(R/P, H^2_I(R/fR))$ (the "socle of $H^2_I(R/fR)$") is infinite dimensional. Hartshorne proved this by exhibiting an infinite set of linearly independent elements in the "socle of $H^2_I(R)$.

In the last 30 years there have been few results in the literature which explain or generalize Hartshorne’s example. For affine semigroup rings, a remarkable result proved by Helm and Miller \cite{HM} gives necessary and sufficient conditions (on the semigroup) for the ring to possess a local cohomology module (of a finitely generated...
module) having infinite dimensional socle. Beyond that work, however, little has been done.

In this paper we prove the following:

Theorem 1.1. Let \((T,m) \) be a Noetherian local ring of dimension at least two. Let \(R = T[x_1, \ldots, x_n] \) be a polynomial ring in \(n \) variables over \(T \), \(I = (x_1, \ldots, x_n) \), and \(f \in R \) a homogeneous polynomial whose coefficients form a system of parameters for \(T \). Then the *socle* of \(H^i_T(R/fR) \) is infinite dimensional.

Hartshorne’s example is obtained by letting \(T = k[[u,v]], n = 2, \) and \(f = ux + vy \) (homogeneous of degree 1). Note, however, that we do not require the coefficient ring to be regular, or even Cohen-Macaulay. As a further illustration, consider the following:

Example 1.2. Let \(R = k[[u^4, u^3v, u^2v^2, uv^3, v^4]][x,y,z] \), \(I = (x,y,z)R \), and \(f = u^4x^2 + v^8yz \). Then the *socle* of \(H^3_T(R/fR) \) is infinite dimensional.

Part of the proof of Theorem 1.1 was inspired by the recent work of Katzman [Ka] where information on the graded pieces of \(H^i_T(R/fR) \) is obtained by examining matrices of a particular form. We apply this technique in the proof of Lemma 2.8.

Throughout, all rings are assumed to be commutative with identity. The reader should consult [Mat] or [BH] for any unexplained terms or notation and [BS] for the basic properties of local cohomology.

\[2. \text{THE MAIN RESULT}\]

Let \(R = \bigoplus R_\ell \) be a Noetherian ring graded by the nonnegative integers. Assume \(R_0 \) is local and let \(P \) be the homogeneous maximal ideal of \(R \). Given a finitely generated graded \(R \)-module \(M \) we define the *socle* of \(M \) by

\[^* \text{soc}_RM = \{x \in M \mid Px = 0\} \]
\[\cong \text{Hom}_R(R/P, M)\].

Clearly, \(^* \text{soc}_RM \cong \text{soc}_{R_0}M_P\). An interesting special case of Huneke’s third problem is the following:

Question 2.1. Let \(n := \mu_R(R_+/PR_+) \), the minimal number of generators of \(R_+ \). When is \(^* \text{soc} H^n_{R_+}(R)\) finitely generated?

For \(i \in \mathbb{N} \) it is well known that \(H^i_{R_+}(R) \) is a graded \(R \)-module, each graded piece \(H^i_{R_+}(R)_\ell \) is a finitely generated \(R_0 \)-module, and \(H^i_{R_+}(R)_\ell = 0 \) for all sufficiently large integers \(\ell \) ([BS 15.1.5]). If we know \textit{a priori} that \(H^i_{R_+}(R)_\ell \) has finite length for all \(\ell \) (e.g., if \(\text{Supp}_R H^i_{R_+}(R) \subseteq \{P\} \)), then Question 2.1 is equivalent to:

Question 2.2. When is \(\text{Hom}_R(R/R_+, H^n_{R_+}(R)) \) finitely generated?

We give a partial answer to these questions for hypersurfaces. For the remainder of this section we adopt the following notation: Let \((T,m) \) be a local ring of dimension \(d \) and \(R = T[x_1, \ldots, x_n] \) a polynomial ring in \(n \) variables over \(T \). We endow \(R \) with an \(\mathbb{N} \)-grading by setting \(\deg T = 0 \) and \(\deg x_i = 1 \) for all \(i \). Let \(I = R_+ = (x_1, \ldots, x_n)R \) and let \(P = m + I \) be the homogeneous maximal ideal of \(R \). Let \(f \in R \) be a homogeneous element of degree \(p \) and \(C_f \) the ideal of \(T \) generated by the coefficients of \(f \).
Our main result is the following:

Theorem 2.3. Assume \(d \geq 2 \) and the (nonzero) coefficients of \(f \) form a system of parameters for \(T \). Then \(\text{soc}_R H^n_I(R/fR) \) is not finitely generated.

The proof of this theorem will be given in a series of lemmas below. Before proceeding with the proof we make a couple of remarks:

Remark 2.4. (a) If \(d \leq 1 \) in Theorem 2.3, then \(\text{soc}_R H^n_I(R/fR) \) is finitely generated. This follows from [DM, Corollary 2] since \(\dim R/I = \dim T \leq 1 \).

(b) The hypothesis that the nonzero coefficients of \(f \) form a system of parameters for \(T \) is stronger than our proof requires. One only needs that \(C_f \) be \(m \)-primary and that there exists a dimension 2 ideal containing all but two of the coefficients of \(f \). (See the proof of Lemma 2.8.)

The following lemma identifies the support of \(H^n_I(R/fR) \) for a homogeneous element \(f \in R \). This lemma also follows from a much more general result recently proved by Katzman and Sharp [KS, Theorem 1.5].

Lemma 2.5. Let \(f \in R \) be a homogeneous element. Then

\[
\text{Supp}_R H^n_I(R/fR) = \{ Q \in \text{Spec } R \mid Q \supseteq I + C_f \}.
\]

Proof. It is enough to prove that \(H^n_I(R/fR) = 0 \) if and only if \(C_f = T \). As \(H^n_I(R/fR)_k \) is a finitely generated \(T \)-module for all \(k \), we have by Nakayama that \(H^n_I(R/fR) = 0 \) if and only if \(H^n_I(R/fR) \otimes_T T/m = 0 \). Now

\[
H^n_I(R/fR) \otimes_T T/m \cong H^n_I(R/fR) \otimes_T T/m \\
\cong H^n_N(S/fS)
\]

where \(S = (T/m)[x_1, \ldots, x_n] \) is a polynomial ring in \(n \) variables over a field and \(N = (x_1, \ldots, x_n)S \). As \(\dim S = n \), we see that \(H^n_N(S/fS) = 0 \) if and only if the image of \(f \) modulo \(m \) is nonzero. Hence, \(H^n_I(R/fR) = 0 \) if and only if at least one coefficient of \(f \) is a unit, i.e., \(C_f = T \). \(\square \)

We are mainly interested in the case when the coefficients of \(f \) generate an \(m \)-primary ideal:

Corollary 2.6. Let \(f \in R \) be homogeneous and suppose \(C_f \) is \(m \)-primary. Then

\[
\text{Supp}_R H^n_I(R/fR) = \{ P \}.
\]

Our next lemma is the key technical result in the proof of Theorem 2.3.

Lemma 2.7. Suppose \(u, v \in T \) such that \(\text{ht}(u, v)T = 2 \). For each integer \(n \geq 1 \) let \(M_n \) be the cokernel of \(\phi_n : T^{n+1} \rightarrow T^n \) where \(\phi_n \) is represented by the matrix

\[
A_n = \begin{pmatrix}
u & v & 0 & 0 & \cdots & 0 & 0 \\
0 & u & v & 0 & \cdots & 0 & 0 \\
0 & 0 & u & v & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & u & v
\end{pmatrix}_{n \times (n+1)}
\]

Let \(J = \bigcap_{n \geq 1} \text{ann}_T M_n \). Then \(\dim T/J = \dim T \).
Proof. Let \hat{T} denote the m-adic completion of T. Then $\text{ht}(u, v)\hat{T} = 2$, $\text{ann}_T M_n = \text{ann}_{\hat{T}}(M_n \otimes_T \hat{T}) \cap T$, and $\dim T/(I \cap T) \geq \dim \hat{T}/I$ for all ideals I of T. Thus, we may assume T is complete. Now let p be a prime ideal of T such that $\dim T/p = \dim T$. Since T is catenary, $\text{ht}(u, v)T/p = 2$. Assume the lemma is true for complete domains. Then $\bigcap_{n \geq 1} \text{ann}_{T/p}(M_n \otimes_T T/p) = p/p$. Hence

$$J = \bigcap_{n \geq 1} \text{ann}_T M_n$$

$$\subseteq \bigcap_{n \geq 1} \text{ann}_T(M_n \otimes_T T/p)$$

$$= p,$$

which implies that $\dim T/J \geq \dim T/p = \dim T$. Thus, it suffices to prove the lemma for complete domains.

As T is complete, the integral closure S of T is a finite T-module ([Mat, page 263]). Since $\text{ht}(u, v)S = 2$ ([Mat, Theorem 15.6]) and S is normal, $\{u, v\}$ is a regular sequence on S. It is easily seen that $I_n(A_n)$, the ideal of $n \times n$ minors of A_n, is $(u, v)^n T$. By the main result of [BE] we obtain $\text{ann}_S(M_n \otimes_T S) = (u, v)^n S$.

Hence $\text{ann}_T M_n \subseteq (u, v)^n S \cap T$. As S is a finite T-module, there exists an integer k such that $\text{ann}_T M_n \subseteq (u, v)^{n-k} T$ for all $n \geq k$. Therefore, $\bigcap_{n \geq 1} \text{ann}_T M_n = (0)$, which completes the proof. \hfill \square

Lemma 2.8. Assume $d \geq 2$ and let $f \in R$ be a homogeneous element of degree p such that the coefficients of f form a system of parameters for T. Then $\dim T/\text{ann}_T H^n_f(R/fR) \geq 2$.

Proof. Let c_1, \ldots, c_d be the nonzero coefficients of f. Let $T' = T/(c_1, \ldots, c_d)T$ and $R' = T'[x_1, \ldots, x_n] \cong R/(c_1, \ldots, c_d)R \cong R \otimes_T T'$. Since

$$\dim T/\text{ann}_T H^n_f(R/fR) \geq \dim T/\text{ann}_T(H^n_f(R/fR) \otimes_T T')$$

$$= \dim T'/\text{ann}_{T'} H^n_{R'}(R'/fR'),$$

we may assume that $\dim T = 2$ and f has exactly two nonzero terms.

For any $w \in R$ there is a surjective map $H^n_f(R/wfR) \to H^n_f(R/fR)$. Hence, $\text{ann}_T H^n_f(R/wfR) \subseteq \text{ann}_T H^n_f(R/fR)$. Thus, we may assume that the terms of f have no (non-unit) common factor. Without loss of generality, we may write $R = T[x_1, \ldots, x_k, y_1, \ldots, y_r]$ and $f = u x_1^{d_1} \cdots x_k^{d_k} + v y_1^{c_1} \cdots y_r^{c_r} = u^{d} + v^{e}$, where $\{u, v\}$ is a system of parameters for T. As f is homogeneous, $p = \sum_i d_i = \sum_i c_i$.

Applying the right exact functor $H^n_f(\cdot)$ to $R(-p) \xrightarrow{f} R \to R/fR \to 0$ we obtain the exact sequence

$$H^n_f(R)_{-\ell} \xrightarrow{f} H^n_f(R)_{-\ell} \to H^n_f(R/fR)_{-\ell} \to 0$$

for each $\ell \in \mathbb{Z}$. For each ℓ, $H^n_f(R)_{-\ell}$ is a free T-module with basis

$$\{x^{-\alpha}y^{-\beta} \mid \sum \alpha_i + \beta_j = \ell, \alpha_i > 0, \beta_j > 0 \forall i, j\}$$

(e.g., [BS], Example 12.4.1). Let q be an arbitrary positive integer and let $\ell(q) = q p + k + r$. Define $L_{-\ell(q)}$ to be the free T-summand of $H^n_f(R)_{-\ell(q)}$ spanned by the set

$$\{x^{-sd-1}y^{-te-1} \mid s + t = q, s, t \geq 0\}.$$
Then the cokernel of $\delta_q : L_{-\ell(q+1)} \xrightarrow{f} L_{-\ell(q)}$ is a direct summand (as a T-module) of $H^0_T(R/fR)_{-\ell(q)}$. For a given q we order the basis elements for $L_{-\ell(q)}$ as follows:

$$x^{-sd-1}y^{-te-1} > x^{-s'd-1}y^{-t'e-1}$$

if and only if $s > s'$. With respect to these ordered bases, the matrix representing δ_q is

$$
\begin{pmatrix}
u & u & v & 0 & 0 & \cdots & 0 & 0 \\
0 & u & v & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & u & v & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & u & v
\end{pmatrix}_{(q+1) \times (q+2)}
$$

By Lemma 2.7 if $J = \bigcap_{q \geq 1} \text{ann}_T \text{coker} \delta_q$, then $\dim T/J = \dim T = 2$. As coker δ_q is a direct T-summand of $H^0_T(R/fR)$, we have $\text{ann}_T H^0_T(R/fR) \subseteq J$. This completes the proof.

Lemma 2.9. Under the assumptions of Lemma 2.8, $\text{Hom}_R(R/I, H^0_T(R/fR))$ is not finitely generated as an R-module. Consequently, $\text{Hom}_R(R/I, H^0_T(R/fR))_k \neq 0$ for infinitely many k.

Proof. Suppose $\text{Hom}_R(R/I, H^0_T(R/fR))$ is finitely generated. By Lemma 3.5 of [MV] we have that $I + \text{ann}_R H^0_T(R/fR)$ is P-primary. (One should note that the hypothesis in [MV, Lemma 3.5] that the ring be complete is not necessary.) This implies that $\text{ann}_T H^0_T(R/fR) \cap T = \text{ann}_T H^0_T(R/fR)$ is m-primary, contradicting Lemma 2.8.

We now give the proof of our main result:

Proof of Theorem 2.3. By Corollary 2.6, $\text{Supp}_R H^0_T(R/fR) = \{ P \}$. Thus, $\text{Hom}_R(R/I, H^0_T(R/fR))_k$ has finite length as a T-module for all k and is nonzero for infinitely many k by Lemma 2.9. Consequently,

$$\text{Hom}_R(R/P, H^0_T(R/fR))_k = \text{Hom}_T(T/m, \text{Hom}_R(R/I, H^0_T(R/fR)))$$

is nonzero for infinitely many k. Hence

$$\text{soc}_R(H^0_T(R/fR)) = \text{Hom}_R(R/P, H^0_T(R/fR))$$

is not finitely generated.

References

Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0323

E-mail address: tmarley@math.unl.edu
URL: http://www.math.unl.edu/~tmarley

Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas 72701

E-mail address: jvassil@uark.edu
URL: http://comp.uark.edu/~jvassil