On the evaluation of generalized Watson integrals

Authors:
G. S. Joyce and I. J. Zucker

Journal:
Proc. Amer. Math. Soc. **133** (2005), 71-81

MSC (2000):
Primary 33-xx

DOI:
https://doi.org/10.1090/S0002-9939-04-07447-7

Published electronically:
August 24, 2004

MathSciNet review:
2085155

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The triple integrals

and

where and are complex variables in suitably defined cut planes, were first evaluated by Watson in 1939 for the special cases and , respectively. In the present paper simple direct methods are used to prove that can be expressed in terms of squares of complete elliptic integrals of the first kind for

*general*values of and . It is also shown that and are related by the transformation formula

where

Thus both of Watson's results for are contained within a

*single*formula for .

**[B]**W. N. Bailey, (1933),*A reducible case of the fourth type of Appell's hypergeometric functions of two variables*, Q. J. Math. Oxford**4**, 305-308.**[B-B]**Jonathan M. Borwein and Peter B. Borwein,*Pi and the AGM*, Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 4, John Wiley & Sons, Inc., New York, 1998. A study in analytic number theory and computational complexity; Reprint of the 1987 original; A Wiley-Interscience Publication. MR**1641658****[B-Z]**J. M. Borwein and I. J. Zucker,*Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind*, IMA J. Numer. Anal.**12**(1992), no. 4, 519–526. MR**1186733**, https://doi.org/10.1093/imanum/12.4.519**[D-J]**R. T. Delves and G. S. Joyce,*On the Green function for the anisotropic simple cubic lattice*, Ann. Physics**291**(2001), no. 1, 71–133. MR**1848300**, https://doi.org/10.1006/aphy.2001.6148**[I]**Giiti Iwata,*Evaluation of the Watson integral of a face-centered lattice*, Natur. Sci. Rep. Ochanomizu Univ.**20**(1969), 13–18. MR**0267143****[J1]**G. S. Joyce, (1972),*Lattice Green function for the simple cubic lattice*, J. Phys. A: Gen. Phys.**5**, L65-L68.**[J2]**G. S. Joyce,*On the simple cubic lattice Green function*, Philos. Trans. Roy. Soc. London Ser. A**273**(1973), no. 1236, 583–610. MR**0591189**, https://doi.org/10.1098/rsta.1973.0018**[J3]**G. S. Joyce,*On the cubic lattice Green functions*, Proc. Roy. Soc. London Ser. A**445**(1994), no. 1924, 463–477. MR**1276913**, https://doi.org/10.1098/rspa.1994.0072**[J4]**G. S. Joyce, (1998),*On the cubic modular transformation and the cubic lattice Green functions*, J. Phys. A: Math. Gen.**31**, 5105-5115.**[J5]**G. S. Joyce,*Exact evaluation of the simple cubic lattice Green function for a general lattice point*, J. Phys. A**35**(2002), no. 46, 9811–9828. MR**1947241**, https://doi.org/10.1088/0305-4470/35/46/307**[S]**Chester Snow,*Hypergeometric and Legendre functions with applications to integral equations of potential theory*, National Bureau of Standards Applied Mathematics Series, No. 19, U. S. Government Printing Office, Washington, D. C., 1952. MR**0048145****[S-K]**H. M. Srivastava and P. W. Karlsson, (1985),*Multiple Gaussian hypergeometric series*, Ellis Horwood, Chichester, West Sussex. MR**0834385 (87f:33015)****[T]**Michael Tikson,*Tabulation of an integral arising in the theory of cooperative phenomena*, J. Research Nat. Bur. Standards**50**(1953), 177–178. MR**0055780****[W]**G. N. Watson,*Three triple integrals*, Quart. J. Math., Oxford Ser.**10**(1939), 266–276. MR**0001257**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
33-xx

Retrieve articles in all journals with MSC (2000): 33-xx

Additional Information

**G. S. Joyce**

Affiliation:
Wheatstone Physics Laboratory, King’s College, University of London, Strand, London WC2R 2LS, United Kingdom

Email:
gsj@maxwell.ph.kcl.ac.uk

**I. J. Zucker**

Affiliation:
Wheatstone Physics Laboratory, King’s College, University of London, Strand, London WC2R 2LS, United Kingdom

Email:
jz@maxwell.ph.kcl.ac.uk

DOI:
https://doi.org/10.1090/S0002-9939-04-07447-7

Received by editor(s):
March 13, 2003

Published electronically:
August 24, 2004

Communicated by:
Jonathan M. Borwein

Article copyright:
© Copyright 2004
American Mathematical Society