Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the evaluation of generalized Watson integrals


Authors: G. S. Joyce and I. J. Zucker
Journal: Proc. Amer. Math. Soc. 133 (2005), 71-81
MSC (2000): Primary 33-xx
Published electronically: August 24, 2004
MathSciNet review: 2085155
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The triple integrals

\begin{displaymath}W_1(z_1)=\frac{1}{\pi^3}\int_0^\pi\int_0^\pi\int_0^\pi \frac{... ...cos\theta_2+\cos\theta_2\cos\theta_3+\cos\theta_3\cos\theta_1)}\end{displaymath}

and

\begin{displaymath}W_2(z_2)=\frac{1}{\pi^3}\int_0^\pi\int_0^\pi\int_0^\pi \frac{... ...a_3}{1-\frac{z_2}{3}(\cos\theta_1+\cos\theta_2+ \cos\theta_3)},\end{displaymath}

where $z_1$ and $z_2$ are complex variables in suitably defined cut planes, were first evaluated by Watson in 1939 for the special cases $z_1=1$ and $z_2=1$, respectively. In the present paper simple direct methods are used to prove that $\{W_j(z_j)\colon j=1,2\}$ can be expressed in terms of squares of complete elliptic integrals of the first kind for general values of $z_1$ and $z_2$. It is also shown that $W_1(z_1)$ and $W_2(z_2)$ are related by the transformation formula

\begin{displaymath}W_2(z_2)=(1-z_1)^{1/2}W_1(z_1),\end{displaymath}

where

\begin{displaymath}z_2^2=-z_1\left(\frac{3+z_1}{1-z_1}\right).\end{displaymath}

Thus both of Watson's results for $\{W_j(1)\colon j=1,2\}$ are contained within a single formula for $W_1(z_1)$.


References [Enhancements On Off] (What's this?)

  • [B] W. N. Bailey, (1933), A reducible case of the fourth type of Appell's hypergeometric functions of two variables, Q. J. Math. Oxford 4, 305-308.
  • [B-B] Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, 4, John Wiley & Sons, Inc., New York, 1998. A study in analytic number theory and computational complexity; Reprint of the 1987 original; A Wiley-Interscience Publication. MR 1641658
  • [B-Z] J. M. Borwein and I. J. Zucker, Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind, IMA J. Numer. Anal. 12 (1992), no. 4, 519–526. MR 1186733, 10.1093/imanum/12.4.519
  • [D-J] R. T. Delves and G. S. Joyce, On the Green function for the anisotropic simple cubic lattice, Ann. Physics 291 (2001), no. 1, 71–133. MR 1848300, 10.1006/aphy.2001.6148
  • [I] Giiti Iwata, Evaluation of the Watson integral of a face-centered lattice, Natur. Sci. Rep. Ochanomizu Univ. 20 (1969), 13–18. MR 0267143
  • [J1] G. S. Joyce, (1972), Lattice Green function for the simple cubic lattice, J. Phys. A: Gen. Phys. 5, L65-L68.
  • [J2] G. S. Joyce, On the simple cubic lattice Green function, Philos. Trans. Roy. Soc. London Ser. A 273 (1973), no. 1236, 583–610. MR 0591189
  • [J3] G. S. Joyce, On the cubic lattice Green functions, Proc. Roy. Soc. London Ser. A 445 (1994), no. 1924, 463–477. MR 1276913, 10.1098/rspa.1994.0072
  • [J4] G. S. Joyce, (1998), On the cubic modular transformation and the cubic lattice Green functions, J. Phys. A: Math. Gen. 31, 5105-5115.
  • [J5] G. S. Joyce, Exact evaluation of the simple cubic lattice Green function for a general lattice point, J. Phys. A 35 (2002), no. 46, 9811–9828. MR 1947241, 10.1088/0305-4470/35/46/307
  • [S] Chester Snow, Hypergeometric and Legendre functions with applications to integral equations of potential theory, National Bureau of Standards Applied Mathematics Series, No. 19, U. S. Government Printing Office, Washington, D. C., 1952. MR 0048145
  • [S-K] H. M. Srivastava and Per W. Karlsson, Multiple Gaussian hypergeometric series, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1985. MR 834385
  • [T] Michael Tikson, Tabulation of an integral arising in the theory of cooperative phenomena, J. Research Nat. Bur. Standards 50 (1953), 177–178. MR 0055780
  • [W] G. N. Watson, Three triple integrals, Quart. J. Math., Oxford Ser. 10 (1939), 266–276. MR 0001257

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 33-xx

Retrieve articles in all journals with MSC (2000): 33-xx


Additional Information

G. S. Joyce
Affiliation: Wheatstone Physics Laboratory, King’s College, University of London, Strand, London WC2R 2LS, United Kingdom
Email: gsj@maxwell.ph.kcl.ac.uk

I. J. Zucker
Affiliation: Wheatstone Physics Laboratory, King’s College, University of London, Strand, London WC2R 2LS, United Kingdom
Email: jz@maxwell.ph.kcl.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-04-07447-7
Received by editor(s): March 13, 2003
Published electronically: August 24, 2004
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2004 American Mathematical Society