Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A Lipschitz estimate for Berezin's operator calculus

Author: L. A. Coburn
Journal: Proc. Amer. Math. Soc. 133 (2005), 127-131
MSC (2000): Primary 47B32; Secondary 32A36
Published electronically: August 20, 2004
MathSciNet review: 2085161
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: F. A. Berezin introduced a general ``symbol calculus" for linear operators on reproducing kernel Hilbert spaces. For the particular Hilbert space of Gaussian square-integrable entire functions on complex $n$-space, ${\text{\bf C}}^{n}$, we obtain Lipschitz estimates for the Berezin symbols of arbitrary bounded operators. Additional properties of the Berezin symbol and extensions to more general reproducing kernel Hilbert spaces are discussed.

References [Enhancements On Off] (What's this?)

  • [AZ] S. Axler and D. Zheng, Compact operators via the Berezin transform, Indiana Univ. Math. J., 47 (1998), 387-400. MR 1647896 (99i:47045)
  • [Ba] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Communications on Pure and Applied Mathematics, 14 (1961), 187-214. MR 0157250 (28:486)
  • [Be$_{1}$] F. A. Berezin, Covariant and contravariant symbols of operators, Math. USSR Izv., 6 (1972), 1117-1151. MR 0350504 (50:2996)
  • [Be$_{2}$] F. A. Berezin, Quantization, Math. USSR Izv., 8 (1974), 1109-1163. MR 0395610 (52:16404)
  • [BBCZ] D. Békollé, C. A. Berger, L. A. Coburn, and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal., 93 (1990), 310-350. MR 1073289 (91j:32034)
  • [BC${}_{1}$] C. A. Berger and L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Transactions AMS, 301 (1987), 813-829. MR 0882716 (88c:47044)
  • [BC${}_{2}$] C. A. Berger and L. A. Coburn, Heat flow and Berezin-Toeplitz estimates, American Journal of Mathematics, 116 (1994), 563-590. MR 1277446 (95g:47038)
  • [E] M. Englis, Compact Toeplitz operators via the Berezin transform on bounded symmetric domains. Integral Equations Operator Theory, 33 (1999), 426-455. MR 1682815 (2000h:47050a)
  • [F] G. B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, Princeton Univ. Press, Princeton, 1989. MR 0983366 (92k:22017)
  • [G] V. Guillemin, Toeplitz operators in $n$ dimensions, Integral Equations and Operator Theory, 7 (1984), 145-205. MR 0750217 (86i:58130)
  • [GK] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs 18, American Mathematical Society, Providence, 1969. MR 0246142 (39:7447)
  • [H] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978. MR 0514561 (80k:53081)
  • [K] S. Krantz, Function theory of several complex variables, Wiley-Interscience, New York, 1982. MR 0635928 (84c:32001)
  • [MPS] T. Mazur, P. Pflug and M. Skwarczynski, Invariant distances related to the Bergman function, Proceedings of the American Mathematical Society, 94 (1985), 72-76. MR 781059 (86i:32047)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47B32, 32A36

Retrieve articles in all journals with MSC (2000): 47B32, 32A36

Additional Information

L. A. Coburn
Affiliation: Department of Mathematics, SUNY at Buffalo, Buffalo, New York 14260

Received by editor(s): July 8, 2003
Received by editor(s) in revised form: August 15, 2003, and September 5, 2003
Published electronically: August 20, 2004
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society