Blocks of central -group extensions

Authors:
Shigeo Koshitani and Naoko Kunugi

Journal:
Proc. Amer. Math. Soc. **133** (2005), 21-26

MSC (2000):
Primary 20C20, 20C05, 20C11

DOI:
https://doi.org/10.1090/S0002-9939-04-07509-4

Published electronically:
July 26, 2004

MathSciNet review:
2085148

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let and be finite groups that have a common central -subgroup for a prime number , and let and respectively be -blocks of and induced by -blocks and respectively of and , both of which have the same defect group. We prove that if and are Morita equivalent via a certain special -bimodule, then such a Morita equivalence lifts to a Morita equivalence between and .

**1.**J. L. Alperin,*Local representation theory*, Cambridge Univ. Press, Cambridge, 1986. MR**87i:20002****2.**B. Külshammer, T. Okuyama, A. Watanabe,*A lifting theorem with applications to blocks and source algebras*, J. Algebra**232**(2000), 299-309. MR**2001g:20013****3.**H. Nagao, Y. Tsushima,*Representations of finite groups*, Academic Press, New York, 1988. MR**90h:20008****4.**L. Puig,*Nilpotent blocks and their source algebras*, Invent. Math.**93**(1988), 77-116. MR**89e:20023****5.**L. Puig,*On the local structure of Morita and Rickard equivalences between Brauer blocks*, Birkhäuser, Basel, 1999. MR**2001d:20006****6.**L. Puig,*Source algebras of**-central group extensions*, J. Algebra**235**(2001), 359-398. MR**2001k:20006****7.**G. R. Robinson,*On projective summands of induced modules*, J. Algebra**122**(1989), 106-111. MR**90c:20011****8.**R. Rouquier,*The derived category of blocks with cyclic defect groups*, in*Derived equivalences for group rings*, S. König and A. Zimmermann, Lecture Notes in Mathematics, Vol. 1685, Springer, Berlin, 1998, pp. 199-220. MR**2000g:16018****9.**R. Rouquier,*Block theory via stable and Rickard equivalences*, in*Modular representation theory of finite groups*, M. J. Collins, B. J. Parshall, L. L. Scott (Eds.), de Gruyter, Berlin, 2001, pp. 101-146.MR**2003g:20018****10.**J. Thévenaz,*-Algebras and modular representation theory*, Clarendon Press, Oxford, 1995. MR**96j:20017****11.**Y. Usami, M. Nakabayashi,*Morita equivalent principal**-blocks of the Chevalley group*, Proc. London Math. Soc.**(3) 86**(2003), 397-434. MR**2004c:20025****12.**W. Willems,*On the projectives of a group algebra*, Math. Zeit.**171**(1980), 163-174. MR**81g:20007**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
20C20,
20C05,
20C11

Retrieve articles in all journals with MSC (2000): 20C20, 20C05, 20C11

Additional Information

**Shigeo Koshitani**

Affiliation:
Department of Mathematics, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan

Email:
koshitan@math.s.chiba-u.ac.jp

**Naoko Kunugi**

Affiliation:
Department of Mathematics, Aichi University of Education, Hirosawa, Igaya-cho, Kariya, 448-8542, Japan

Email:
nkunugi@auecc.aichi-edu.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-04-07509-4

Keywords:
$p$-block,
Morita equivalence,
central extension

Received by editor(s):
April 25, 2003

Received by editor(s) in revised form:
September 8, 2003

Published electronically:
July 26, 2004

Communicated by:
Jonathan I. Hall

Article copyright:
© Copyright 2004
American Mathematical Society