DECOMPOSABILITY OF GRAPH C*-ALGEBRAS

JEONG HEE HONG

(Communicated by David R. Larson)

Abstract. We give conditions on an arbitrary directed graph E for the associated Cuntz-Krieger algebra $C^*(E)$ to be decomposable as a direct sum. We describe the direct summands as certain graph algebras.

0. Introduction

Recently various generalizations of Cuntz-Krieger algebras [2] have attracted a lot of attention. In this article we are concerned with generalized Cuntz-Krieger algebras based on directed graphs [7] and references therein). One of the key advantages in the theory of graph algebras is that a directed graph E is used to conveniently represent generators and relations of the associated graph algebra $C^*(E)$. Thanks to the combined efforts of a number of researchers, it is now known how to read from the graph many of the basic properties and invariants of the algebra.

As with many a mathematical theory, classification of the objects in question presents itself as an important objective. A future classification of graph algebras might be very useful in paving the way for other classifications of more general classes of C*-algebras, similarly to the way the classification of Cuntz-Krieger algebras was the starting point for the Kirchberg-Phillips classification of purely infinite simple algebras. In this context, the class of non-simple purely infinite graph algebras (in the sense of Kirchberg-Rørdam) appears to be of particular interest (cf. [6]). Certainly, the first necessary step towards a classification of non-simple algebras is good understanding of their ideal structure. For graph algebras this has been recently achieved (cf. [1, 5]). These results have already been successfully applied in solutions to some concrete problems in the classification of graph algebras as well as in quantum groups (cf. [1, 8, 3]).

In the present article we consider the question when an ideal of a graph algebra is a direct summand or, in other words, when a graph algebra decomposes as a direct sum. This very natural question turns out to be more complicated than it appears. Obviously, $C^*(E)$ splits as a direct sum when the graph E is disconnected. However, such a splitting also exists for many connected directed graphs. Especially in the context of infinite directed graphs this is a subtle problem requiring careful

Received by the editors September 4, 2003.
2000 Mathematics Subject Classification. Primary 46L05.
Key words and phrases. Generalized Cuntz-Krieger algebras, directed graphs, graph algebras, ideals.

This work was supported by Korea Research Foundation Grant (KRF-2003-015-C00034).

©2004 American Mathematical Society
analysis, and even for finite graphs it is not a trivial one. The main result of this paper is a necessary and sufficient condition on an arbitrary infinite graph E that guarantees that the associated graph algebra $C^*(E)$ decomposes as a direct sum. Furthermore, we show that the summands are themselves isomorphic to certain graph algebras.

1. Preliminaries on Graph C^*-algebras

Let $E = (E^0, E^1, r, s)$ be a directed graph with countably many vertices E^0 and edges E^1, and range, source functions $r, s : E^1 \to E^0$, respectively. The graph C^*-algebra, or simply graph algebra $C^*(E)$ is defined as the universal C^*-algebra generated by families of projections $\{P_v : v \in E^0\}$ and partial isometries $\{S_e : e \in E^1\}$, subject to the following relations:

- (GA1) $P_v^2 = P_v$ for all $v \in E^0$.
- (GA2) $S_e^*S_f = 0$ for $e, f \in E^1$, $e \neq f$.
- (GA3) $S_e^*S_{ef} = P_{r(e)}$ for $e \in E^1$.
- (GA4) $S_eS_{e}^* \leq P_{s(e)}$ for $e \in E^1$.
- (GA5) $P_v = \sum_{e \in E^1 : s(e) = v} S_eS_{e}^*$ for $v \in E^0$ such that $0 < |s^{-1}(v)| < \infty$.

In this case, $\{P_v, S_e : v \in E^0, e \in E^1\}$ is called a Cuntz-Krieger E-family. Universality in the definition means that if $Q_v : v \in E^0$ and $T_e : e \in E^1$ are families of projections and partial isometries, respectively, satisfying conditions (GA1–GA5), then there exists a C^*-algebra homomorphism from $C^*(E)$ to the C^*-algebra generated by $\{Q_v : v \in E^0\}$ and $\{T_e : e \in E^1\}$ such that $P_v \mapsto Q_v$ and $S_e \mapsto T_e$ for $v \in E^0$, $e \in E^1$. It is also equivalent to the existence of a gauge action $\gamma : \mathbb{T} \to \text{Aut}(C^*(E))$, which is characterized by $\gamma_t(S_e) = tS_e$ and $\gamma_t(P_v) = P_v$ for $e \in E^1$, $v \in E^0$, $t \in \mathbb{T}$.

As usual we denote by E^* the set of all finite paths in E (vertices in E^0 are identified with paths of length 0), and by E^∞ the set of all infinite paths in E. By writing $v \geq w$ when there is a path from v to w, we say that a subset H of E^0 is hereditary if $v \in H$ and $v \geq w$ imply $w \in H$. A subset X of E^0 is said to be saturated if every vertex v that satisfies $0 < |s^{-1}(v)| < \infty$ and $s(e) = v \implies r(e) \in X$ itself belongs to X. The following definitions come from [1]. For a hereditary and saturated subset X of E^0, we denote $X^\text{fin} = \{v \in E^0 \setminus X : |s^{-1}(v)| = \infty, 0 < |s^{-1}(v) \cap r^{-1}(E^0 \setminus X)| < \infty\}$. If $w \in X^\text{fin}$, $P_{w,X} = \sum_{e \in E^1, s(e) = w, t(e) \notin X} S_eS_{e}^*$ denotes the subprojection of P_w.

Our methods in this article are mainly based on the structure of gauge-invariant ideals of graph algebras (see [1] for details). Let X be a hereditary and saturated subset of E^0. For $B \subseteq X^\text{fin}$, we denote by $J_{X,B}$ the ideal of $C^*(E)$ generated by $\{P_v : v \in X\}$ and $\{P_w - P_{w,X} : w \in B\}$. When $B = \emptyset$, we write $J_{X,\emptyset} = I_X$, the ideal generated by $\{P_v : v \in X\}$. We have

\begin{equation}
J_{X,B} = \oplus_{\alpha, \eta, \mu, \nu \in E^*, r(\alpha) = r(\eta) = v \in X, r(\mu) = r(\nu) = w \in B} \bigoplus_{S} S_{\alpha}P_{\nu,S_{\eta}}S_{\nu}(P_{w} - P_{w,X})S_{\nu}^*.
\end{equation}

The ideal $J_{X,B}$ is gauge-invariant, i.e. $\gamma_t(J_{X,B}) = J_{X,B}$ for all $t \in \mathbb{T}$. It is now fully known that $J_{X,B}$ and the quotient $C^*(E)/J_{X,B}$ are isomorphic to graph algebras, associated with a directed graph XE_B and a quotient graph E/X. To form a directed graph XE_B, let $\overline{F}_E(X,B)$ be the collection of all finite paths.
\[\alpha = (a_1, \ldots, a_n) \] of positive length such that \(s(\alpha) \in E^0 \setminus X \), \(r(\alpha) \in X \cup B \), and \(r(a_j) \notin X \cup B \) for \(j < |\alpha| \). Set \(F_E(X, B) = \overline{F_E}(X, B) \setminus \{ e \in E^1 : s(e) \in B \text{ and } r(e) \in X \} \). We denote by \(\overline{F_E}(X, B) \) another copy of \(F_E(X, B) \), and write \(\overline{\alpha} \in \overline{F_E}(X, B) \) for the copy of \(\alpha \in F_E(X, B) \). Then the graph \(X \overline{E}_B \) is given as follows:

\[
\begin{align*}
(x \overline{E}_B)^0 &= x \overline{E}_B^0 = X \cup B \cup F_E(X, B), \\
(x \overline{E}_B)^1 &= x \overline{E}_B^1 \\
&= \{ e \in E^1 : s(e) \in X \} \cup \{ e \in E^1 : s(e) \in B \text{ and } r(e) \in X \} \cup \overline{F_E}(X, B),
\end{align*}
\]

with \(s(\overline{\alpha}) = \alpha \) and \(r(\overline{\alpha}) = r(\alpha) \) for \(\alpha \in F_E(X, B) \), and the source and range as in \(E \) for the other edges of \(X \overline{E}_B \). When \(B = \emptyset \), we simply denote \(X \overline{E}_B = X \overline{E} \).

The quotient graph \(E/X \) is given by \((E/X)^0 = (E^0 \setminus X) \cup \{ \beta(v) : v \in X^\text{fin}_\infty \}\) and \((E/X)^1 = r^{-1}(E^0 \setminus X) \cup \{ \beta(e) : e \in E^1, r(e) \in X^\text{fin}_\infty \}\), where \(r, s \) are extended by \(s(\beta(e)) = s(e) \) and \(r(\beta(e)) = \beta(r(e)) \). Here \(\beta \) is just a symbol helping to distinguish \(v \) and \(e \) from the extra \(\beta(v) \) and \(\beta(e) \) in \(E/X \), respectively. See \cite{3} Example 1.4 and \cite{1} Example 3.3, which illustrate the graphs \(X \overline{E}_B \) and \(E/X \) respectively.

Theorem 1.1. Let \(E \) be a directed graph. Then there is a 1-1 correspondence between the set of gauge-invariant ideals of \(C^*(E) \) and the set of ideals of the form \(J_{X, B} \) where \(X \) is a hereditary and saturated subset of \(E^0 \) and \(B \subseteq X^\text{fin}_\infty \). Moreover,

(i) \cite{3} Lemma 1.5)) the ideal \(J_{X, B} \) is isomorphic to \(C^*(X \overline{E}_B) \), and

(ii) \cite{1} Corollary 3.5) its quotient \(C^*(E)/J_{X, B} \overline{E}_B \) is isomorphic to \(C^*((E/X) \setminus \beta(B)) \).

If \(B = X^\text{fin}_\infty \), then

\[
C^*(E)/J_{X, X^\text{fin}_\infty} \cong C^*(E \setminus X),
\]

where \(E \setminus X = (E^0 \setminus X, r^{-1}(E^0 \setminus X), r, s) \).

2. **Direct sum decompositions of graph \(C^*-algebras**

Definition 2.1. Let \(E \) be a directed graph. If there exist two non-zero \(C^*-algebras \) \(A, B \) such that \(C^*(E) \cong A \oplus B \), then \(C^*(E) \) is said to be **decomposable**. Otherwise \(C^*(E) \) is **indecomposable**.

Our aim is to find conditions on \(E \) so that \(C^*(E) \) is decomposable. We denote by \(\text{Prim}(A) \) the set of all primitive ideals in a \(C^*-algebra \) \(A \), equipped with the hull-kernel topology.

Lemma 2.2. If \(C^*(E) = A \oplus B \) with non-zero closed ideals \(A \) and \(B \), then \(A \) and \(B \) are gauge-invariant.

Proof. Since every ideal in \(C^*(E) \) can be realized as the intersection of a family of primitive ideals and \(\text{Prim}(C^*(E)) \) is the disjoint union of \(\text{Prim}(A) \) and \(\text{Prim}(B) \), it suffices to show that \(\text{Prim}(A) \) and \(\text{Prim}(B) \) are invariant under the gauge action \(\gamma \).

If \(J \) is a primitive ideal of \(C^*(E) \) that is not gauge-invariant, then there exists a homeomorphic imbedding \(\phi : T \to \text{Prim}(C^*(E)) \) such that \(J \) belongs to \(\phi(T) \), by combining Lemma 2.8 and Theorem 2.10 of \cite{5}. Furthermore, \(\phi(T) \) is invariant under the gauge action. Since \(T \) is connected, \(\phi(T) \) is connected in \(\text{Prim}(C^*(E)) \). However, both \(\text{Prim}(A) \) and \(\text{Prim}(B) \) are closed and open, and therefore \(\phi(T) \) is entirely contained either in \(\text{Prim}(A) \) or in \(\text{Prim}(B) \). Consequently, both \(\text{Prim}(A) \) and \(\text{Prim}(B) \) are invariant under the gauge action. \(\Box\)
By Lemma 2.2, require that A and B be graph algebras. However, this turns out to be true by the following theorem.

Theorem 2.3. If $C^*(E) = A \oplus B$ with non-zero closed ideals A and B, then there exist non-empty, disjoint, hereditary and saturated subsets X and Y of E^0 such that $A = J_{X,X}^{\infty}$, $B = J_{Y,Y}^{\infty}$, and $(X \cup X^{\infty}) \cap (Y \cup Y^{\infty}) = \emptyset$. Furthermore, $C^*(E)$ is decomposed into the direct sum of two graph algebras as $C^*(E \setminus Y) \oplus C^*(E \setminus X)$.

Proof. By Lemma 2.2 A and B are gauge-invariant. Then by Theorem 1.1 there exist two hereditary and saturated subsets X and Y of E^0 such that $A = J_{X,C}$ and $B = J_{Y,D}$ where $C \subseteq X^{\infty}$ and $D \subseteq Y^{\infty}$. We have

$$X = \{ v \in E^0 : P_v \in A \}, \quad C = \{ v \in E^0 \setminus X : P_v - P_{v,X} \in A \}, \quad Y = \{ v \in E^0 : P_v \in B \}, \quad D = \{ v \in E^0 \setminus Y : P_v - P_{v,Y} \in B \}.$$

It follows from the decomposability of $C^*(E)$ that X and Y are non-empty and disjoint. Then, by the definitions of X^{∞} and Y^{∞}, $X^{\infty} \cap Y^{\infty} = \emptyset$.

To show the fact $C = X^{\infty}$, suppose that there is a vertex $v \in X^{\infty} \setminus C$. Then the projection $P_v - P_{v,C} \notin J_{X,C}$. Since $C^*(E) = J_{X,C} \oplus J_{Y,D}$, we must have $P_v - P_{v,X} \in J_{Y,D}$, or $v \in D \subseteq Y^{\infty}$, a contradiction to the fact $X^{\infty} \cap Y^{\infty} = \emptyset$. Thus we must have $C = X^{\infty}$, and a similar argument yields $D = Y^{\infty}$. The fact $(X \cup X^{\infty}) \cap (Y \cup Y^{\infty}) = \emptyset$ then follows easily from the hereditary and saturated properties of X and Y.

Moreover, if $C^*(E) = J_{X,X}^{\infty} \oplus J_{Y,Y}^{\infty}$, then

$$J_{X,X}^{\infty} \cong C^*(E)/J_{Y,Y}^{\infty} \cong C^*(E \setminus Y)$$

and

$$J_{Y,Y}^{\infty} \cong C^*(E)/J_{X,X}^{\infty} \cong C^*(E \setminus X),$$

i.e. $C^*(E) \cong C^*(E \setminus Y) \oplus C^*(E \setminus X)$.

Remark 2.4. By Theorem 1.1 we know that $J_{X,X}^{\infty} \cong C^*(x E_x^{\infty})$. If $C^*(E)$ is decomposable as in Theorem 2.3 then $C^*(x E_x^{\infty}) \cong J_{X,X}^{\infty} \cong C^*(E \setminus Y)$. In general, the two graphs $x E_x^{\infty}$ and $E \setminus Y$ are different even though their associated graph algebras are isomorphic.

The following observation will be useful later in this article.

Lemma 2.5. Let X and Y be non-empty, disjoint, hereditary and saturated subsets of E^0 such that $C^*(E) = J_{X,X}^{\infty} \oplus J_{Y,Y}^{\infty}$. If $u \in E^0 \setminus (X \cup Y)$, then there exists a path in E from u into $X \cup Y$.

Proof. Suppose that there exists no paths in E from u into $X \cup Y$. We have $u \notin X^{\infty} \cup Y^{\infty}$. Since P_u must be in one of the summands, it suffices to show $P_u J_{X,X}^{\infty} = 0 = P_u J_{Y,Y}^{\infty}$ to obtain a contradiction. We use the description of the ideals $J_{X,X}^{\infty}$ and $J_{Y,Y}^{\infty}$ given by the formula (1). If $w \in X$ (or Y) and α, η are paths in E with $\alpha(0) = \eta(0) = w$, then there must be no paths in E from u to both α and η by assumption. Hence $P_u (S_{\alpha} P_w S_{\eta}^*) = 0$. Let $w \in X^{\infty} \text{ and } \mu, \nu$ be paths in E with $\mu(0) = \nu(0) = w$. Again there must be no paths in E from u to both μ and ν. Hence we get $P_u (S_{\mu} (P_w - P_{w,X}) S_{\nu}^*) = 0$. Similarly we obtain $P_u (S_{\mu} (P_w - P_{w,Y}) S_{\nu}^*) = 0$ for the case of $w \in Y^{\infty}$.
3. Certain representations

We now focus on constructing two representations (Lemmas 3.2 and 3.4) of $C^*(E)$, which will play a crucial role in proving our main result. To this end, it is useful to consider a certain subgraph F of E. Let X and Y be non-empty, disjoint, hereditary and saturated subsets of E^0. Then the subgraph $F = (F^0, F^1, r, s)$ of E is given by

\begin{equation}
F^0 = E^0,
\end{equation}

\begin{equation}
F^1 = E^1 \setminus \{(e \in E^1: s(e) \in X, r(e) \in X) \cup \{f \in E^1: s(f) \in Y, r(f) \in Y}\}.
\end{equation}

Let Ω be the collection of all finite paths in F beginning outside $X \cup Y$ and ending inside $X \cup Y$, upon the first entry into $X \cup Y$, i.e.,

$$\Omega := \{\omega = (e_1, \ldots, e_k) \in F^*: s(\omega) \notin X \cup Y, r(\omega) \in X \cup Y, r(e_i) \notin X \cup Y \quad \text{for } i < k \ (k \in \mathbb{N} \setminus \{0\})\},$$

and let H_Ω be the Hilbert space with an orthonormal basis $\{\xi_\omega : \omega \in \Omega\}$ indexed by Ω. We define projections $\{Q_v : v \in E^0\}$ and partial isometries $\{T_e : e \in E^1\}$ on H_Ω as follows:

\begin{equation}
Q_v(\xi_\omega) = \begin{cases}
\xi_\omega & \text{if } v = s(\omega), \\
0 & \text{otherwise},
\end{cases}
\end{equation}

\begin{equation}
T_e(\xi_\omega) = \begin{cases}
\xi_{(e,\omega)} & \text{if } r(e) = s(\omega), \\
0 & \text{otherwise}.
\end{cases}
\end{equation}

Note that for $v \in E^0 \setminus (X \cup Y)$, the projection Q_v has finite rank if and only if there exist finitely many paths in F from v to $X \cup Y$. Indeed, the vertex $v \in E^0 \setminus (X \cup Y)$ corresponds to a projection Q_v that maps onto $\text{span}\{\xi_\omega : s(\omega) = v, \omega \in \Omega\}$.

Lemma 3.1. Let X and Y be non-empty, disjoint, hereditary and saturated subsets of E^0. Let F be the subgraph of E as defined in (2) and (3). If for every $v \in E^0 \setminus (X \cup Y)$ there exist finitely many (and at least one) paths in F with source v to $X \cup Y$, then there exist only finitely many edges in F emitting from v.

Proof. Let $v \in E^0 \setminus (X \cup Y)$ satisfy the above conditions. Suppose that there are infinitely many edges e in F with $s(e) = v$. By passing this into the graph E, we see that $v \notin X_{\infty} \cup Y_{\infty}$ in E. Hence only two cases are possible.

(i) If all edges $e \in s^{-1}(v)$ satisfy $r(e) \in E^0 \setminus (X \cup Y)$ except finitely many edges, then there are finitely many paths in F from v to $X \cup Y$ by assumption. These would produce infinitely many paths in F from v to $X \cup Y$, a contradiction.

(ii) If there are infinitely many $e \in E^1$ with $s(e) = v, r(e) \in X$ and infinitely many $f \in E^1$ with $s(f) = v, r(f) \in Y$, then all these edges still remain in the graph F to yield infinitely many paths in F from v to $X \cup Y$, a contradiction. \hfill \square

We now examine whether the family $\{Q_v, T_e : v \in E^0, e \in E^1\}$ satisfies the Cuntz-Krieger relations for E. Conditions (GA1) and (GA2) are obvious. Condition (GA3) follows from the fact that $T_e^* T_e(\xi_\omega) = Q_v(\xi_\omega)$ if and only if $s(\omega) = v = r(e)$. Similarly, condition (GA4) is fulfilled. Unfortunately this family may not satisfy (GA5). Indeed, suppose $v \in E^0$ has the property $0 < |s^{-1}(v)| < \infty$ in E. For any $e \in s^{-1}(v)$, $T_e^* T_e$ is a projection onto $\text{span}\{\xi_\omega : \omega = (e, \omega')\}$ for some $\omega' \in
\(\Omega\) and \(r(e) = s(\omega')\), while the range of the projection \(Q_v\) includes the vector \(\xi_{(f,\omega')}\) for some \(\omega' \in \Omega\) and \(r(f) = s(\omega')\), whenever there is an edge \(f \in E^1\) such that \(s(f) = s(e) = v\) and \(e \neq f\). Bearing this in mind, let us define \(R_v\) as the projection onto \(\overline{\operatorname{span}}\{\xi_e \mid e \in E^1, s(e) = v, r(e) \in X \cup Y\}\). Then \(R_v\) is a projection of finite rank in \(\mathcal{B}(\mathcal{H}_\Omega)\) by the construction, and

\[
Q_v = \sum_{e \in E^1, s(e) = v, r(e) \in X \cup Y} T_e T_e^* + R_v.
\]

By hint of this, we pass the generating family into \(\mathcal{B}(\mathcal{H}_\Omega)/\mathcal{K}(\mathcal{H}_\Omega)\) so that the image forms a Cuntz-Krieger \(E\)-family. To this end let \(\pi : \mathcal{B}(\mathcal{H}_\Omega) \rightarrow \mathcal{B}(\mathcal{H}_\Omega)/\mathcal{K}(\mathcal{H}_\Omega)\) be the canonical quotient map. Then \(\{\pi(Q_v), \pi(T_e) : v \in E^0, e \in E^1\}\) forms a Cuntz-Krieger \(E\)-family in \(\mathcal{B}(\mathcal{H}_\Omega)/\mathcal{K}(\mathcal{H}_\Omega)\). Indeed, it is enough to check \((GA5)\). So let \(v \in E^0\) be \(0 < |s^{-1}(v)| < \infty\). Since the rank of \(R_v\) onto \(\overline{\operatorname{span}}\{\xi_e \mid e \in E^1, s(e) = v, r(e) \in X \cup Y\}\) is finite in \(\mathcal{B}(\mathcal{H}_\Omega)\), the formula (6) yields \(\pi(Q_v) = \sum_{e \in E^1, s(e) = v} \pi(T_e)\pi(T_e)^*\) in \(\mathcal{B}(\mathcal{H}_\Omega)/\mathcal{K}(\mathcal{H}_\Omega)\), and hence \((GA5)\) holds.

Lemma 3.2. Let \(X\) and \(Y\) be non-empty, disjoint, hereditary and saturated subsets of \(E^0\). Then there is a \(*\)-homomorphism

\[
\rho : C^*(E) \rightarrow \mathcal{B}(\mathcal{H}_\Omega)/\mathcal{K}(\mathcal{H}_\Omega),
\]

satisfying \(\rho(S_{\alpha}) = \pi(T_{\alpha}), \rho(P_{\alpha}) = \pi(Q_{\alpha}), e \in E^1, v \in E^0, \) and \(\rho(J_{X,X^\infty}) = \rho(J_{Y,Y^\infty}) = \{0\}\).

Proof. Since \(\{\pi(Q_v), \pi(T_e) : v \in E^0, e \in E^1\}\) forms a Cuntz-Krieger \(E\)-family in \(\mathcal{B}(\mathcal{H}_\Omega)/\mathcal{K}(\mathcal{H}_\Omega)\) by the above argument, universality of \(C^*(E)\) implies that there exists a \(*\)-homomorphism \(\rho : C^*(E) \rightarrow \mathcal{B}(\mathcal{H}_\Omega)/\mathcal{K}(\mathcal{H}_\Omega)\) such that \(\rho(S_{\alpha}) = \pi(T_{\alpha}), \rho(P_{\alpha}) = \pi(Q_{\alpha}), e \in E^1, v \in E^0, \) and \(\rho(J_{X,X^\infty}) = \rho(J_{Y,Y^\infty}) = \{0\}\).

For the remaining part \(\rho(J_{X,X^\infty}) = \{0\}\), we check on the generators \(P_v\) and \(P_w - P_{w,X}\) of \(J_{X,X^\infty}\), when \(v \in X\) and \(w \in X^\infty\). If \(v \in X\), then \(\rho(P_v) = \pi(Q_v) = 0\) because there is no \(\alpha \in \Omega\) satisfying \(s(\alpha) = v\). Let \(w \in X^\infty\). If \(\alpha = (e_1, \ldots, e_k) \in \Omega\) with \(s(\alpha) = w\), then \(r(e_i) \notin X\). Hence we have \(\pi(Q_w)\xi_{\alpha} = \pi(Q_{w,X})\xi_{\alpha}\) for all \(\alpha \in \Omega\), and thus \(\rho(P_w - P_{w,X}) = \pi(Q_w - Q_{w,X}) = 0\). The similar argument gives \(\rho(J_{Y,Y^\infty}) = \{0\}\). \([\square]\)

Now let \(v \in E^0 \setminus (X \cup Y)\) and suppose there is an infinite path, say \(\alpha = (a_1, a_2, a_3, \ldots)\) in \(E\) such that \(s(\alpha) = v\). We define a corresponding representation of \(C^*(E)\). Let \(\Lambda\) be the collection of all infinite paths in \(E\) that are shift-tail equivalent to \(\alpha\) (recall that an infinite path \((e_1, e_2, e_3, \ldots)\) is shift-tail equivalent to \(\alpha\) if there exist \(k, m \in \mathbb{N}\) such that \(e_{k+i} = a_{m+i}\) for all \(i \in \mathbb{N}\), i.e.,

\[
\Lambda := \{ \beta = (b_1, b_2, b_3, \ldots) \in E^\infty : \exists k, m \in \mathbb{N} \text{ s.t. } b_{k+i} = a_{m+i} \text{ for all } i \in \mathbb{N} \},
\]

and let \(\mathcal{H}_{\Lambda}\) be the Hilbert space with an orthonormal basis \(\{\xi_\beta : \beta \in \Lambda\}\) indexed by \(\Lambda\). For \(w \in E^0\) and \(e \in E^1\) we define a projection \(U_w\) and a partial isometry \(D_e\) on \(\mathcal{H}_{\Lambda}\) as follows:

\[
U_w(\xi_\beta) = \begin{cases}
\xi_\beta & \text{if } w = s(\beta), \\
0 & \text{otherwise},
\end{cases}
\]

\[
D_e(\xi_\beta) = \begin{cases}
\xi_{(e,b_1,b_2,\ldots)} & \text{if } r(e) = s(\beta), \text{ where } \beta = (b_1, b_2, \ldots) \in \Lambda, \\
0 & \text{otherwise}.
\end{cases}
\]
Lemma 3.3. Let X and Y be non-empty, disjoint, hereditary and saturated subsets of E^0. If a vertex $v \in E^0 \setminus (X \cup Y)$ has an infinite path $\alpha = (a_1, a_2, a_3, \cdots)$ in E with $s(\alpha) = v$, then there is a $*$-homomorphism

$$\varrho : C^*(E) \to \mathcal{B}(\mathcal{H}_\Lambda)$$

such that $\varrho(P_w) = U_w$ and $\varrho(S_v) = D_v$ for all $w \in E^0$, $e \in E^1$. Furthermore, if α never enters $X \cup Y$, then $\varrho(J_{X,Y}^{\infty}) = \varrho(J_{X,Y}^{\infty}) = \{0\}$.

Proof. It is easy to show that the family $\{U_w, D_v : w \in E^0, e \in E^1\}$ as defined in (7) and (8) is a Cuntz-Krieger E-family, and thus universality of $C^*(E)$ implies that there is a $*$-homomorphism $\varrho : C^*(E) \to \mathcal{B}(\mathcal{H}_\Lambda)$ such that $\varrho(P_w) = U_w$ and $\varrho(S_v) = D_v$ for all $w \in E^0$, $e \in E^1$.

Now suppose that α never enters $X \cup Y$, that is, $r(a_j) \not\in X \cup Y$ for all j. It suffices to check that ϱ kills all the generating projections of the ideals $J_{X,X}^{\infty}$ and $J_{Y,Y}^{\infty}$. First we show that ϱ kills all generating projections P_w and $P_u - P_{u,X}$ of $J_{X,X}^{\infty}$ for $w \in X$ and $u \in X^{\infty}$. If $w \in X$ satisfies $\varrho(P_w) \neq 0$, then there exists an infinite path $\beta = (b_1, b_2, \cdots)$ such that $s(\beta) = w$ and $b_{k+i} = a_{m+i}$ for some $k, m \in \mathbb{N}$. By the hereditary property of X, $r(b_k) = r(a_m) \in X$, a contradiction. Now let $u \in X^{\infty}$ satisfy $\varrho(P_u,X) \neq 0$. Since $P_{u,X} = P_u - \sum_{s(c) = u, r(c) \not\in X} S_c E_c$, there exists an infinite path $\beta = (b_1, b_2, \cdots)$ such that $s(\beta) = u$, $b_{k+i} = a_{m+i}$ for some $k, m \in \mathbb{N}$, and $r(b_1) \in X$. This is a contradiction, since the hereditary property of X would then imply that α enters X.

By replacing X with Y in the above argument we can easily show that ϱ kills the generating projections P_w and $P_u - P_{u,Y}$ of $J_{Y,Y}^{\infty}$ for $w \in Y$ and $u \in Y^{\infty}$.

Lemma 3.4. Let X and Y be non-empty, disjoint, hereditary and saturated subsets of E^0 such that $C^*(E) = J_{X,X}^{\infty} \oplus J_{Y,Y}^{\infty}$, and let F be the subgraph of E as defined in (2) and (3). If $v \in E^0 \setminus (X \cup Y)$ and there are no paths in F from v to $X \cup Y$, then there exists a representation ϱ of $C^*(E)$ such that $\varrho(J_{X,X}^{\infty}) = \varrho(J_{Y,Y}^{\infty}) = \{0\}$ but $\varrho(P_v) \neq 0$.

Proof. Let $v \in E^0 \setminus (X \cup Y)$. Assume that there are no paths in F from v into $X \cup Y$. We first show that there exists an infinite path in E which begins at v and never enters $X \cup Y$. By Lemma 2.3 there exists a path in E from v to $X \cup Y$. Suppose that it enters, say X. Let w be the last vertex on this path which is not in X. Because of our assumption on v, the vertex w must satisfy the following:

(i) w belongs to X^{∞},
(ii) there is no edge in E which begins at w and ends inside Y.

Condition (i) is obvious. Indeed, if $w \not\in X^{\infty}$, then it would yield a path in F from v to X, a contradiction. Condition (ii) also holds obviously by the same reason as the case of (i). (Note that if the path enters Y, then the conditions become (i) $w \in Y^{\infty}$ and (ii) there is no edge in E which begins at w and ends inside X.) This means that there are finitely many edges $e \in E^1$ such that $s(e) = w$ and $r(e) \not\in X \cup Y$. Then, by applying Lemma 2.3 again to the vertex $r(e)$, we see that there exists a path in E from $r(e)$ to $X \cup Y$. Now the same argument with $r(e)$ as before yields a vertex u satisfying the conditions (i) and (ii). Continuously we can produce an infinite path in E from v that never enters $X \cup Y$. Call it $\alpha = (a_1, a_2, a_3, \cdots)$.

Now consider the corresponding representation ϱ on the Hilbert space \mathcal{H}_Λ as defined in (7) and (8). Since the path α begins at v, it follows that $\varrho(P_\alpha) \neq 0$.

Moreover, since \(\alpha \) never enters \(X \cup Y \), \(\rho \) is zero on both \(J_{X, X_{\infty}} \) and \(J_{Y, Y_{\infty}} \) by Lemma 3.3.

4. THE MAIN RESULTS

We now have all the ingredients to prove our main theorem.

Theorem 4.1. Let \(E \) be a directed graph. Then \(C^*(E) \) is decomposable if and only if there exist two non-empty, disjoint, hereditary and saturated subsets \(X \) and \(Y \) of \(E^0 \) such that for every \(v \in E^0 \setminus (X \cup Y) \) there exist finitely many (and at least one) paths in \(F \) from \(v \) to \(X \cup Y \), where \(F \) is the subgraph of \(E \) as defined in (2) and (3).

If this is the case, \(C^*(E) \) is decomposed into two graph algebras as \(C^*(E \setminus Y) \oplus C^*(E \setminus X) \).

Proof. (\(\Rightarrow \)) Let \(C^*(E) \) be decomposable. Then by Theorem 2.3, there exist two non-empty, disjoint, hereditary and saturated subsets \(X \) and \(Y \) of \(E^0 \) such that \(C^*(E) = J_{X, X_{\infty}} \oplus J_{Y, Y_{\infty}} \) and \((X \cup X_{\infty}) \cap (Y \cup Y_{\infty}) = \emptyset \). We now form the subgraph \(F \) of \(E \) as defined in (2) and (3), and let \(v \in E^0 \setminus (X \cup Y) \). By Lemma 3.2, there is a representation \(\rho \) of \(C^*(E) \) on the Hilbert space \(\mathcal{H}_A \) such that \(\rho(J_{X, X_{\infty}}) = \rho(J_{Y, Y_{\infty}}) = \{0\} \).

Suppose that there are infinitely many paths in \(F \) from \(v \) into \(X \cup Y \). Then the projection \(Q_v \), as defined in (4), has infinite rank in \(B(\mathcal{H}_A) \), and hence \(\pi(Q_v) \neq 0 \) in \(B(\mathcal{H}_A)/K(\mathcal{H}_A) \). Since \(\rho(P_v) = \pi(Q_v) \), it follows from Lemma 3.2 that \(P_v \neq 0 \) in \(C^*(E)/(J_{X, X_{\infty}} + J_{Y, Y_{\infty}}) \), or \(P_v \notin J_{X, X_{\infty}} \oplus J_{Y, Y_{\infty}} = C^*(E) \), a contradiction. Hence there exist only finitely many paths in \(F \) from \(v \) to \(X \cup Y \).

Now suppose that there are no paths in \(F \) from \(v \) to \(X \cup Y \). Then by Lemma 3.4, there exists a representation \(\rho \) of \(C^*(E) \) on the Hilbert space \(\mathcal{H}_A \) such that \(\rho(J_{X, X_{\infty}}) = \rho(J_{Y, Y_{\infty}}) = \{0\} \), but \(\rho(P_v) \neq 0 \). This means \(P_v \notin J_{X, X_{\infty}} + J_{Y, Y_{\infty}} = C^*(E) \), a contradiction. Hence there must exist at least one path in \(F \) from \(v \) to \(X \cup Y \).

Proof. (\(\Leftarrow \)) Let \(X \) and \(Y \) be non-empty subsets of \(E^0 \) satisfying the above conditions. We show that \(J_{X, X_{\infty}} \cap J_{Y, Y_{\infty}} = \{0\} \) and \(J_{X, X_{\infty}} \cup J_{Y, Y_{\infty}} \) generates \(C^(E) \).

Step 1. For \(J_{X, X_{\infty}} \cap J_{Y, Y_{\infty}} = \{0\} \), it is enough to check the following cases by virtue of (1).

(i) We show \((S_\alpha P_v S_\beta)(S_\mu P_v S_\nu) = 0 \) for paths \(\alpha, \beta, \mu, \nu \) such that \(r(\alpha) = r(\beta) = w \in X \), \(r(\mu) = r(\nu) = v \in X \). Suppose that either \(\beta \) is an initial subpath of \(\mu \) or \(\mu \) is an initial subpath of \(\beta \). This implies that either there is a path from \(Y \) to \(X \) or vice versa, a contradiction since \(X \) and \(Y \) are hereditary and disjoint. Thus \(S_\beta S_\mu = 0 \).

(ii) We show \((S_{\alpha} P_w S_\beta)(S_{\mu}(P_v - P_{v, X})S_{\nu}) = 0 \) for paths \(\alpha, \beta, \mu, \nu \) such that \(r(\alpha) = r(\beta) = w \in Y \) and \(r(\mu) = r(\nu) = v \in X_{\infty} \). Note that \(\beta \) cannot be an initial subpath of \(\mu \). Otherwise this creates a path from \(w \in Y \) to \(v \), and the hereditary property of \(Y \) implies \(v \in X_{\infty} \cap Y \), but now \(v \in X_{\infty} \cap Y \) implies \(Y \cap X_{\infty} = 0 \) since \(X \) and \(Y \) are hereditary. This contradicts the fact \(X_{\infty} \cap Y = \emptyset \). Next, assume that \(\mu \) is an initial subpath of \(\beta \). We write \(\beta = (\mu, \beta_1) \) and \(\beta_1 = (e, e_1, \cdots, e_k) \). Note that \(r(e) \notin X \) because \(X \) is hereditary and \(r(\beta) = w \in Y \). Thus \(S^*_{\epsilon_k} P_{v, X} = S^*_{\epsilon_k} \sum f \in E, r(f) = w S_f S^*_f = S^*_{\epsilon_k} \). This implies \(S^*_{\epsilon_k}(P_v - P_{v, X}) = S^*_{\epsilon_k} P_v - S^*_{\epsilon_k} = 0 \), and hence

\[
S^*_{\beta_1}(P_v - P_{v, X}) = S^*_{\beta_1}(P_v - P_{v, X}) = S^*_{\epsilon_k} \cdots S^*_{\epsilon_1} S^*_{\epsilon_1}(P_v - P_{v, X}) = 0.
\]
(iii) The same argument as (ii) gives \((S_n(P_w - P_w, Y)S_{\beta, Y}^*)(S_{\mu, P_v, S_{\mu, Y}^*}) = 0\) if \(\alpha, \beta, \mu, \nu\) are paths such that \(r(\alpha) = r(\beta) = w \in Y_{\infty}^{\text{fin}}\) and \(r(\mu) = r(\nu) = v \in X\).

(iv) We show \((S_n(P_w - P_w, Y)S_{\beta, Y}^*)(S_{\mu, P_v, S_{\mu, Y}^*}) = 0\) for paths \(\alpha, \beta, \mu, \nu\) such that \(r(\alpha) = r(\beta) = w \in Y_{\infty}^{\text{fin}}\) and \(r(\mu) = r(\nu) = v \in X_{\infty}^{\text{fin}}\). It is enough to show this when there would be a path from \(v\) to \(w\) or vice versa. If \(v \geq w\), then write \(\beta = (\mu, \beta_1)\) with a subpath \(\beta_1\) (if \(w \geq v\), then write \(\mu = (\beta, \mu_1)\) with a subpath \(\mu_1\)). The same argument as (ii) yields the result.

Step 2. To show that the ideal \(J\) generated by \(J_{X, X_{\infty}^{\text{fin}}} \cup J_{Y, Y_{\infty}^{\text{fin}}}\) equals \(C^*(E)\), it suffices to observe that \(J\) contains all projections \(P_v, v \in E^0\). Clearly, we only need to examine vertices \(v \in E^0 \setminus (X \cup Y)\). To this end, we use the induction on the number of finite paths in \(F\) from \(v \in E^0 \setminus (X \cup Y)\) to \(X \cup Y\).

(i) Suppose that there is only one path \((e_1, \ldots, e_k)\) in \(F\) such that \(v = s(e_1), r(e_i) \notin X \cup Y\) for \(i < k\), and \(r(e_k) \in X \cup Y\). We show by reverse induction on \(i = 1, \ldots, k\) that \(P_{s(e_i)}\) belongs to the ideal \(J\) generated by \(J_{X, X_{\infty}^{\text{fin}}} \cup J_{Y, Y_{\infty}^{\text{fin}}}\). (To simplify notation, we agree that \(e_{k+1}\) is the vertex \(r(e_k)\).) Indeed, suppose that \(P_{s(e_{i+1})} \in J\). If \(s(e_i)\) does not belong to \(X_{\infty}^{\text{fin}} \cup Y_{\infty}^{\text{fin}}\), then \(e_i\) is the only edge in \(E\) emitted by \(s(e_i)\), and hence \(r(e_i) = s(e_{i+1})\). Now \(S_{e_i} = S_{e_i}, P_{r(e_i)} = S_{e_i} P_{s(e_i)} \in J\), and it follows that \(P_{s(e_i)} = S_{e_i} S_{e_i}^* \in J\), and we are done. If \(s(e_i) \in X_{\infty}^{\text{fin}}\), then \(e_i\) is the only edge emitted by \(s(e_i)\) whose range lies outside \(X\). For otherwise there existed more than one path in \(F\) from \(v\) to \(X \cup Y\). Thus \(S_{e_i} S_{e_i}^* \in J\) by the previous observation. Hence we have \(P_{s(e_i)} = (P_{s(e_i)} - P_{s(e_i), X}) + S_{e_i} S_{e_i}^* \in J\), and the claim follows.

(ii) Now suppose that \(P_w \in J\) for all vertices \(w \in E^0 \setminus (X \cup Y)\) for which there are at most \(n\) paths in \(F\) from \(w\) to \(X \cup Y\). Let \(v\) be a vertex in \(E^0 \setminus (X \cup Y)\) with \(n + 1\) paths in \(F\) from \(v\) to \(X \cup Y\). Let \((e_1, \ldots, e_k)\) be one of these paths. Since there are at least two paths in \(F\) from \(v\) to \(X \cup Y\), it follows that there exists an index \(i\) such that \(s(e_i)\) emits at least two edges in \(F\). Let \(m\) be the smallest such an index. Then for every edge \(f\) in \(F^1\) with \(s(f) = s(e_m)\) we have \(P_{r(f)} \in J\), by the inductive hypothesis. Indeed, for each such \(f\) the number of paths in \(F\) from \(r(f)\) to \(X \cup Y\) is not greater than \(n\).

If \(s(e_m)\) does not belong to \(X_{\infty}^{\text{fin}} \cup Y_{\infty}^{\text{fin}}\), then every edge emitted by \(s(e_m)\) is in \(F\), and there are only finitely many such edges by Lemma 5.1. Thus \(P_{s(e_m)} = \sum_{s(f) = s(e_m)} S_f S_f^*\) belongs to \(J\). If \(s(e_m) \in X_{\infty}^{\text{fin}}\), then every edge emitted by \(s(e_m)\) with range outside \(X\) is in \(F\). Thus in this case we again see that \(P_{s(e_m)} = (P_{s(e_m)} - P_{s(e_m), X}) + \sum_{s(f) = s(e_m)} S_f S_f^*\) belongs to \(J\). In either case, by the choice of \(m\), there exists a unique path \((e_1, \ldots, e_{m-1})\) in \(F\) from \(v = s(e_1)\) to \(s(e_m)\). Thus, a reasoning as in part (i) above shows that \(P_{s(e_j)} \in J\) for all \(j = 1, \ldots, m\). Consequently \(P_v \in J\). This ends the proof of the inductive step and the proof of Step 2.

Finally, if \(C^*(E) = J_{X, X_{\infty}^{\text{fin}}} \oplus J_{Y, Y_{\infty}^{\text{fin}}}\), then it is clear from Theorem 4.1 that \(J_{X, X_{\infty}^{\text{fin}}} \cong C^*(E)/J_{Y, Y_{\infty}^{\text{fin}}} \cong C^*(E \setminus Y)\) and \(J_{Y, Y_{\infty}^{\text{fin}}} \cong C^*(E)/J_{X, X_{\infty}^{\text{fin}}} \cong C^*(E \setminus X)\).
Corollary 4.2. Let E be a directed graph with finitely many vertices. Then there exist finitely many subgraphs F_1, \ldots, F_n of E such that $C^*(E) \cong C^*(F_1) \oplus \cdots \oplus C^*(F_n)$ and each $C^*(F_k)$ is indecomposable.

Proof. The decomposition of $C^*(E)$ depends on the existence of two non-empty, disjoint, hereditary and saturated subsets X and Y of E^0 satisfying conditions in Theorem 4.1. If no such subsets X and Y exist, then the algebra $C^*(E)$ is itself indecomposable. Otherwise, $C^*(E) \cong C^*(F_1) \oplus C^*(F_2)$ for some graphs F_1 and F_2. If both $C^*(F_1)$ and $C^*(F_2)$ are indecomposable, we are done. Otherwise, find a direct sum decomposition of the algebras $C^*(F_i)$ whenever they are decomposable. Continuing this process yields the result after a finite number of steps. \hfill \Box

5. C^*-Algebras of Finite Graphs

This section is devoted to giving a more feasible criterion for C^*-algebras of finite directed graphs, even though it can be covered by Theorem 4.1.

Theorem 5.1. Let E be a finite directed graph. Then $C^*(E)$ is decomposable if and only if there exist two non-empty, disjoint, hereditary and saturated subsets X and Y of E^0 such that for every vertex $v \in E^0 \setminus (X \cup Y)$ (i) there exist paths from v to both X and Y, and (ii) there is no loop passing through v. If this is the case, $C^*(E) = I_X \oplus I_Y \cong C^*(E \setminus Y) \oplus C^*(E \setminus X)$.

Proof. (\Rightarrow) By taking $B = \emptyset$ in Theorem 2.3 we see that $C^*(E) = I_X \oplus I_Y$ with two non-empty, disjoint, hereditary and saturated subsets X and Y of E^0.

(i) Consider a vertex $v \in E^0 \setminus (X \cup Y)$ and suppose for a moment that there is no path in E from v to a vertex in Y. Since $I_Y = \sum_{\alpha \beta \in E^*, w \in Y} \{ r(\alpha) = r(\beta) = w \}$, it is clear that $P_v I_Y = \{ 0 \}$. Since $C^*(E) = I_X \oplus I_Y$ we must have $P_v \in I_X$ and consequently $v \in X$, a contradiction. Hence there is a path from v to X. Similarly, there must be a path from v to X.

(ii) Suppose $v \in E^0 \setminus (X \cup Y)$ and there is a loop $\mu = (\mu_1, \ldots, \mu_k)$ in E through v. Since the ideal $I_{X \cup Y}$, generated by I_X and I_Y, equals $C^*(E)$ we have $I_{X \cup Y} = I_{E^0}$. But $X \cup Y$ is a hereditary set and $I_{X \cup Y}$ equals $I_{\Sigma (X \cup Y)}$, where $\Sigma (X \cup Y)$ denotes the saturation of $X \cup Y$. Since a gauge-invariant ideal determines the corresponding hereditary and saturated subset of E^0, we must have $\Sigma (X \cup Y) = E^0$ and, in particular, v belongs to the saturation of $X \cup Y$. Now $\Sigma (X \cup Y) = E^0$ is the union of the sequence $\Sigma_n(X \cup Y)$, defined inductively by $\Sigma_0(X \cup Y) = X \cup Y$ and $\Sigma_{n+1} = \Sigma_n(X \cup Y) \cup \{ w \in E^0 : 0 < |s^{-1}(w)| \text{ and } s(e) = w \text{ imply } r(e) \in \Sigma_n(X \cup Y) \}$ (cf. [11 Remark 3.1]). Due to $v \notin \Sigma_0(X \cup Y)$ we can choose the smallest integer $n > 0$ such that $v \in \Sigma_n(X \cup Y)$. Since $s(\mu_1) = v$ we have $r(\mu_1) \in \Sigma_{n-1}(X \cup Y)$. But it is easy to see that $\Sigma_{n-1}(X \cup Y)$ is hereditary. Therefore $v = r(\mu_k) \in \Sigma_{n-1}(X \cup Y)$, a contradiction to our choice of n.

(\Leftarrow) Let X and Y be subsets of E^0 satisfying the above conditions. The fact that $I_X \cap I_Y = \{ 0 \}$ follows by an argument similar to the proof of Theorem 4.1. To show that the ideal generated by $I_X \cup I_Y$ equals $C^*(E)$, i.e. this ideal contains all projections P_v, $v \in E^0$, we show that the saturation $\Sigma (X \cup Y)$ equals E^0. Suppose, by way of contradiction, that $\Sigma (X \cup Y) \neq E^0$. We define a partial order \preceq for vertices in $E^0 \setminus (X \cup Y)$ so that $v \preceq w$ if and only if there is a path from v to w. Note that since there are no loops through vertices in $E^0 \setminus (X \cup Y)$ it follows that $v \preceq w$ implies $w \not\preceq v$. Since the set $E^0 \setminus (X \cup Y)$ is finite, there exists a maximal element v_0 with respect to \preceq. This vertex v_0 is not a sink by assumption. Also,
Example 6.1. Let E_1, E_2 be the following finite directed graphs. The algebra $C^*(E_1)$ is indecomposable by Theorem 5.1 because $X = \{v, w\}$ and $Y = \{u, w\}$ are the only hereditary and saturated subsets of E_1^0, and they are not disjoint.

In the graph E_2, $X = \{v\}$ and $Y = \{u\}$ are disjoint hereditary and saturated subsets of E_2^0. Note that $C^*(E_2)$ is decomposable by Theorem 5.1 because $w \in E_2^0 \setminus (X \cup Y)$ has paths to both X and Y, and there is no loop based at w. The decomposition depends on the graph $E_2 \setminus Y = E_2 \setminus X$, and hence $C^*(E_2) \cong (M_2(\mathbb{C}) \otimes C(T)) \oplus (M_2(\mathbb{C}) \otimes C(T))$.

Example 6.2. Here (∞) denotes that there are infinitely many edges from w to u. $X = \{v\}$ and $Y = \{u\}$ are disjoint, hereditary and saturated subsets of E^0. From the corresponding subgraph F of E as defined in (2) and (3), we see that $C^*(E)$ is decomposable by Theorem 4.1.

Hence $C^*(E \setminus X) \cong K \otimes C(T)$ and $C^*(E \setminus Y) \cong M_2(\mathbb{C}) \otimes C(T)$, and both are indecomposable.

Example 6.3. The sets $X = \{v\}$ and $Y = \{u\}$ are disjoint, hereditary and saturated subsets of E^0. Here the corresponding subgraph F of E is the same as E. Since there are infinitely many path in F from $w \in E^0 \setminus (X \cup Y)$ entering $X \cup Y$, $C^*(E)$ is indecomposable by Theorem 4.1.

$E = F$
Example 6.4. The sets \(X = \{x\} \) and \(Y = \{y\} \) are disjoint, hereditary and saturated subsets of \(E^0 \). Since there exist no paths in \(F \) from \(v \in E^0 \setminus (X \cup Y) \) (and from \(w \in E^0 \setminus (X \cup Y) \)) entering \(X \cup Y \), \(C^*(E) \) is indecomposable by Theorem 4.1.

Acknowledgements

I would like to thank the referee for valuable suggestions and comments which contributed to improvement of the exposition.

References

Applied Mathematics, Korea Maritime University, Busan 606–791, South Korea

E-mail address: hongjh@hanara.kmaritime.ac.kr

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use