Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The best bounds in Wallis' inequality


Authors: Chao-Ping Chen and Feng Qi
Journal: Proc. Amer. Math. Soc. 133 (2005), 397-401
MSC (2000): Primary 05A10, 26D20; Secondary 33B15
DOI: https://doi.org/10.1090/S0002-9939-04-07499-4
Published electronically: August 30, 2004
MathSciNet review: 2093060
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For all natural numbers $n$, let $n!!$ denote a double factorial. Then

\begin{displaymath}\frac1{\sqrt{\pi\bigl(n+\frac4{\pi}-1\bigr)}}\leq \frac{(2n-1)!!}{(2n)!!}<\frac1{\sqrt{\pi\bigl(n+\frac14\bigr)}}. \end{displaymath}

The constants $\frac{4}{\pi}-1$ and $\frac14$ are the best possible. From this, the well-known Wallis' inequality is improved.


References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 9th printing, Dover, New York, 1972. MR 34:8607
  • 2. H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), 373-389. MR 97e:33004
  • 3. G. D. Anderson, R. W. Barnard, K. C. Richards, M. K. Vamanamurthy, and M. Vuorinen, Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc. 347 (1995), 1713-1723. MR 95m:33002
  • 4. P. S. Bullen, A Dictionary of Inequalities, Pitman Monographs and Surveys in Pure and Applied Mathematics 97, Addison-Wesley, Longman Limited, 1998. MR 2000e:26001
  • 5. Ch.-P. Chen and F. Qi, Improvement of lower bound in Wallis' inequality, RGMIA Res. Rep. Coll. 5 (2002), suppl., Art. 23. Available online at http://rgmia.vu.edu.au/v5(E).html.
  • 6. Ch.-P. Chen and F. Qi, The best bounds in Wallis' inequality, RGMIA Res. Rep. Coll. 5 (2002), no. 4, Art. 13. Available online at http://rgmia.vu.edu.au/v5n4.html.
  • 7. Ch.-P. Chen and F. Qi, A new proof of the best bounds in Wallis' inequality, RGMIA Res. Rep. Coll. 6 (2003), no. 2, Art. 2. Available online at http://rgmia.vu.edu.au/v6n2.html.
  • 8. S. R. Finch, Archimedes' Constant, §1.4 in Mathematical Constants, Cambridge Univ. Press, Cambridge, England, 2003. Available online at http://pauillac.inria.fr/algo/bsolve/.
  • 9. C. L. Frenzer, Error bounds for asymptotic expansions of the ratio of two gamma functions, SIAM J. Math. Anal. 18 (1987), 890-896. MR 88d:33001
  • 10. http://mathworld.wolfram.com/HadamardProduct.html.
  • 11. http://mathworld.wolfram.com/RiemannZetaFunction.html.
  • 12. http://mathworld.wolfram.com/WallisFormula.html.
  • 13. http://mathworld.wolfram.com/WallisCosineFormula.html.
  • 14. http://mathworld.wolfram.com/WallisSineFormula.html.
  • 15. H. Jeffreys and B. S. Jeffreys, Wallis's Formula for $\pi$, §15.07 in Methods of Mathematical Physics, 3rd ed. Cambridge Univ. Press, Cambridge, England, 1988.
  • 16. N. D. Kazarinoff, Analytic Inequalities, Holt, Rhinehart and Winston, New York, 1961.MR 41:5577
  • 17. J. F. Kenney and E. S. Keeping, Mathematics of Statistics, Part 2, 2nd ed., Van Nostrand, Princeton, New Jersey, 1951.
  • 18. J.-Ch. Kuang, Chángyòng Bùdengshì (Applied Inequalities), 2nd edition, Hunan Education Press, Changsha, China, 1993. (Chinese) MR 95j:26001
  • 19. Y. L. Luke, Inequalities for the gamma function and its logarithmic derivative, Math. Balkanica (N. S.) 2 (1972), 118-123.MR 50:10338
  • 20. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics, Birkhäuser, Basel, 1988.MR 89h:33001
  • 21. F. Qi, L.-H. Cui, and S.-L. Xu, Some inequalities constructed by Tchebysheff's integral inequality, Math. Inequal. Appl. 2 (1999), no. 4, 517-528. MR 2000m:26027
  • 22. J. Sondow, Analytic continuation of Riemann's zeta function and values at negative integers via Euler's transformation of series, Proc. Amer. Math. Soc. 120 (1994), 421-424. MR 94d:11066
  • 23. E. W. Weisstein, Concise Encyclopedia of Mathematics CD-ROM, CD-ROM edition 1.0, May 20, 1999. Available online at http://www.math.pku.edu.cn/stu/eresource/wsxy/sxrjjc/wk/ Encyclopedia/math/w/w009.htm

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 05A10, 26D20, 33B15

Retrieve articles in all journals with MSC (2000): 05A10, 26D20, 33B15


Additional Information

Chao-Ping Chen
Affiliation: Department of Applied Mathematics and Informatics, Research Institute of Applied Mathematics, Henan Polytechnic University, Jiaozuo City, Henan 454000, People’s Republic of China
Email: chenchaoping@hpu.edu.cn

Feng Qi
Affiliation: Department of Applied Mathematics and Informatics, Research Institute of Applied Mathematics, Henan Polytechnic University, Jiaozuo City, Henan 454000, People’s Republic of China
Email: qifeng@hpu.edu.cn, fengqi618@member.ams.org

DOI: https://doi.org/10.1090/S0002-9939-04-07499-4
Keywords: Wallis' inequality, best bound, gamma function, monotonicity
Received by editor(s): August 3, 2002
Received by editor(s) in revised form: June 23, 2003, and September 27, 2003
Published electronically: August 30, 2004
Additional Notes: The authors were supported in part by NSF (#10001016) of China, SF for the Prominent Youth of Henan Province (#0112000200), SF of Henan Innovation Talents at Universities, NSF of Henan Province (#004051800), Doctor Fund of Jiaozuo Institute of Technology, China
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society