Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Cayley transform of linear relations


Authors: Mercedes Fernandez Miranda and Jean-Philippe Labrousse
Journal: Proc. Amer. Math. Soc. 133 (2005), 493-499
MSC (2000): Primary 47A05, 47A06
DOI: https://doi.org/10.1090/S0002-9939-04-07551-3
Published electronically: August 20, 2004
MathSciNet review: 2093073
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper extends the definition of the Cayley transform defined for symmetric linear operators to any linear relation.


References [Enhancements On Off] (What's this?)

  • 1. R. ARENS, Operational calculus of linear relations, Pacific J. Math. 11, (1961), pp. 9-23. MR 23:A517
  • 2. Z. BOULMAAROUF and J-Ph. LABROUSSE, The Cayley transform of linear relations, J. Egyptian Math. Soc. 2, (1994), pp. 53-65. MR 96a:47034
  • 3. R. CROSS, Multivalued linear operators, Marcel Dekker, Inc., New York (1998). MR 99j:47003
  • 4. Y. MEZROUI, Projection orthogonale sur le graphe d'une relation linéaire fermée, Trans. Amer. Math. Soc. 352(6), (2000), pp. 2789-2800. MR 2000j:47003
  • 5. M. Z. NASHED (ed.), General inverses and applications, Academic Press, New York (1976). MR 56:9943

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47A05, 47A06

Retrieve articles in all journals with MSC (2000): 47A05, 47A06


Additional Information

Mercedes Fernandez Miranda
Affiliation: Departamento de Matemáticas, Universidad de Antofagasta, Angamos 601, Antofagasta, Chile
Email: mfernandez@uantof.cl

Jean-Philippe Labrousse
Affiliation: Université de Nice-Sophia Antipolis, Laboratoire J. A. Dieudonné, UMR du CNRS Nô 6621, Parc Valrose, Nice Cedex 02, France
Email: labro@math.unice.fr

DOI: https://doi.org/10.1090/S0002-9939-04-07551-3
Keywords: Linear relation, operator, Cayley transform
Received by editor(s): March 5, 2003
Received by editor(s) in revised form: October 15, 2003
Published electronically: August 20, 2004
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society