Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Infinite time blow-up for superlinear parabolic problems with localized reaction

Author: Philippe Souplet
Journal: Proc. Amer. Math. Soc. 133 (2005), 431-436
MSC (2000): Primary 35K60, 35B40
Published electronically: September 16, 2004
MathSciNet review: 2093064
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the nonlocal diffusion equation


on the space interval $(0,1)$, with Dirichlet boundary conditions. It is known that if the curve $x_0(t)$ remains in a compact subset of $(0,1)$ for all times, then blow-up cannot occur in infinite time. The aim of this paper is to show that the assumption on $x_0$ is sharp: for a large class of functions $x_0(t)$approaching the boundary as $t\to\infty$, blow-up in infinite time does occur for certain initial data. Moreover, the asymptotic behavior of the corresponding solution is precisely estimated and more general nonlinearities are also considered.

References [Enhancements On Off] (What's this?)

  • 1. J. R. CANNON, H.-M. YIN, A class of nonlinear non-classical parabolic equations, J. Differ. Equations, 79 (1989), 266-288. MR 1000690 (90f:35104)
  • 2. T. CAZENAVE, P.-L. LIONS, Solutions globales d'équations de la chaleur semi linéaires, Commun. Partial Differ. Equations, 9 (1984), 955-978. MR 0755928 (87k:35125)
  • 3. J. M. CHADAM, A. PEIRCE, H.-M. YIN, The blow-up property of solutions to some diffusion equations with localized nonlinear reactions, J. Math. Anal. Appl., 169 (1992), 313-328. MR 1180894 (93h:35092)
  • 4. W. DENG, Z. DUAN, C. XIE, The blow-up rate for a degenerate parabolic equation with a non-local source, J. Math. Anal. Appl., 264 (2001), 577-597. MR 1876751 (2002i:35107)
  • 5. M. FILA, Boundedness of global solutions of nonlinear parabolic problems, Proceedings of the 4th European Conference on Elliptic and Parabolic Problems (Rolduc, June 2001), pp. 88-102, World Scientific, 2002. MR 1937530 (2003i:35130)
  • 6. M. FILA, PH. SOUPLET, F. WEISSLER, Linear and nonlinear heat equations in $L^q_\delta$ spaces and universal bounds for global solutions, Math. Annalen, 320 (2001), 87-113. MR 1835063 (2002j:35149)
  • 7. V. A. GALAKTIONOV, J. L. VÁZQUEZ, Continuation of blow-up solutions of nonlinear heat equations in several space dimensions, Comm. Pure Appl. Math., 50 (1997), 1-67. MR 1423231 (97h:35085)
  • 8. Y. GIGA, A bound for global solutions of semilinear heat equations, Commun. Math. Phys., 103 (1986), 415-421. MR 0832917 (87j:35187)
  • 9. Z. LIN, C. XIE, M. WANG, The blow-up properties of solutions to a parabolic system with localized nonlinear reactions, Acta Math. Sci., 18 (1998), 413-420. MR 1696579 (2000b:35114)
  • 10. Y. MARTEL, PH. SOUPLET, Small time boundary behavior of solutions of parabolic equations with noncompatible data, J. Math. Pures Appl., 79 (2000), 603-632. MR 1770663 (2001j:35124)
  • 11. I.-H. NAM, H.-K. JU, Asymptotic behavior of blow-up solution of a localized semilinear parabolic equation, Honam Math. J., 19 (1997), 61-69. MR 1460353 (98h:35126)
  • 12. W.-M. NI, P. E. SACKS, J. TAVANTZIS, On the asymptotic behavior of solutions of certain quasilinear parabolic equations, J. Differ. Equations, 54 (1984), 97-120. MR 0756548 (87j:35057)
  • 13. A. OKADA, I. FUKUDA, Blow-up of solutions of nonlinear parabolic equations with localized reaction. in: Free boundary problems: theory and applications, II (Chiba, 1999), 358-366, GAKUTO Internat. Ser. Math. Sci. Appl., 14, Gakkotosho, Tokyo, 2000. MR 1794365 (2001i:35158)
  • 14. M. PEDERSEN, Z. LIN, Coupled diffusion systems with localized nonlinear reactions, Comput. Math. Appl., 42 (2001), 807-816. MR 1846188 (2002e:35133)
  • 15. M. PEDERSEN, Z. LIN, The profile near blowup time for solutions of diffusion systems coupled with localized nonlinear reactions, Nonlinear Anal., 50 (2002), 1013-1024. MR 1915320 (2003i:35160)
  • 16. P. QUITTNER, Universal bound for global positive solutions of a superlinear parabolic problem, Math. Annalen, 320 (2001), 299-305. MR 1839765 (2002f:35130)
  • 17. P. QUITTNER, A priori bounds for solutions of parabolic problems and applications, Math. Bohemica, 127 (2002), 329-341. MR 1981537 (2004d:35120)
  • 18. P. ROUCHON, Boundedness of global solutions for nonlinear diffusion equations with localized source, Differ. Integral Equations, 16 (2003), 1083-1092. MR 1989542 (2004d:35134)
  • 19. PH. SOUPLET, Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal., 29 (1998), 1301-1334. MR 1638054 (99h:35104)
  • 20. PH. SOUPLET, Uniform blow-up profiles and boundary behavior for diffusion equations with nonlocal nonlinear source, J. Differ. Equations, 153 (1999), 374-406. MR 1683627 (2000e:35105)
  • 21. L. WANG, Q. CHEN, The asymptotic behavior of blowup solution of localized nonlinear equation, J. Math. Anal. Appl., 200 (1996), 315-321. MR 1391152 (97d:35096)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35K60, 35B40

Retrieve articles in all journals with MSC (2000): 35K60, 35B40

Additional Information

Philippe Souplet
Affiliation: Département de Mathématiques, INSSET Université de Picardie, 02109 St-Quentin, France – and – Laboratoire de Mathématiques Appliquées, UMR CNRS 7641, Université de Versailles, 45 avenue des États-Unis, 78035 Versailles, France

Keywords: Semilinear diffusion equation, localized reaction, nonlocal parabolic problem, blow-up in infinite time, asymptotic behavior
Received by editor(s): December 4, 2002
Published electronically: September 16, 2004
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society