Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On subclasses of weak Asplund spaces


Authors: Ondrej F. K. Kalenda and Kenneth Kunen
Journal: Proc. Amer. Math. Soc. 133 (2005), 425-429
MSC (2000): Primary 46B26, 03E35
DOI: https://doi.org/10.1090/S0002-9939-04-07744-5
Published electronically: September 2, 2004
MathSciNet review: 2093063
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Assuming the consistency of the existence of a measurable cardinal, it is consistent to have two Banach spaces, $X,Y$, where $X$ is a weak Asplund space such that $X^{*}$ (in the weak* topology) in not in Stegall's class, whereas $Y^{*}$is in Stegall's class but is not weak* fragmentable.


References [Enhancements On Off] (What's this?)

  • [1] M. Fabian, Gâteaux differentiability of convex functions and topology: weak Asplund spaces, Wiley-Interscience, New York, 1997. MR 1461271 (98h:46009)
  • [2] R. Frankiewicz and K. Kunen, Solution of Kuratowski's problem on function having the Baire property I., Fund. Math. 128 (1987), 171-180.MR 0922569 (89a:03090)
  • [3] T. Jech, M. Magidor, W. Mitchell and K. Prikry, Precipitous ideals, J. Symb. Log. 45 (1980), 1-8. MR 0560220 (81h:03097)
  • [4] Y. Kakuda, On a condition for Cohen extensions which preserve precipitous ideals, J. Symbolic Logic 46 (2) (1981), 296-300.MR 0613283 (82i:03062)
  • [5] O. Kalenda, Hereditarily Baire spaces and point of continuity property, Diploma Thesis, Charles University, Prague, 1995 (Czech).
  • [6] O. Kalenda, Stegall compact spaces which are not fragmentable, Topol. Appl. 96 (2) (1999), 121-132. MR 1702306 (2000i:54027)
  • [7] O. Kalenda, A weak Asplund space whose dual is not in Stegall's class, Proc. Amer. Math. Soc. 130 (7) (2002), 2139-2143. MR 1896051 (2003a:46024)
  • [8] A. Kanamori, The higher infinite. Large cardinals in set theory from their beginnings, Springer-Verlag, Berlin, 1994. MR 1321144 (96k:03125)
  • [9] P. Kenderov, W. Moors and S. Sciffer, A weak Asplund space whose dual is not weak* fragmentable, Proc. Amer. Math. Soc. 129 (12) (2001), 3741-3747. MR 1860511 (2002h:54014)
  • [10] K. Kunen, Some applications of iterated ultrapowers in set theory, Ann. Math. Logic 1 (1970), 179-227. MR 0277346 (43:3080)
  • [11] K. Kunen, Set theory. An introduction to independence proofs, Studies in logic and the foundations of mathematics, vol. 102, North-Holland, 1980. MR 0597342 (82f:03001)
  • [12] C. Kuratowski, La propriété de Baire dans les espaces métriques, Fund. Math. 16 (1930), 390-394.
  • [13] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), 143-178. MR 0270904 (42:5787)
  • [14] J. Silver, The consistency of the GCH with the existence of a measurable cardinal, Axiomatic Set Theory, Proc. Sympos. Pure Math., Vol. XIII, Part I,, Univ. California, Los Angeles, Calif., 1967, pp. 391-395.MR 0278937 (43:4663)
  • [15] R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin's problem, Ann. of Math. 94 (1971), 201-245. MR 0294139 (45:3212)
  • [16] C. Stegall, A class of topological spaces and differentiability, Vorlesungen aus dem Fachbereich Mathematik der Universität Essen 10 (1983), 63-77. MR 0730947 (85j:46026)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B26, 03E35

Retrieve articles in all journals with MSC (2000): 46B26, 03E35


Additional Information

Ondrej F. K. Kalenda
Affiliation: Department of Mathematical Analysis, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic
Email: kalenda@karlin.mff.cuni.cz

Kenneth Kunen
Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706
Email: kunen@math.wisc.edu

DOI: https://doi.org/10.1090/S0002-9939-04-07744-5
Keywords: Weak Asplund space, fragmentable space, Stegall's class of spaces, measurable cardinal
Received by editor(s): October 4, 2001
Published electronically: September 2, 2004
Additional Notes: The first author was supported by Research grants GAUK 277/2001, GAČR 201/00/1466 and MSM 113200007
The second author was supported by NSF Grant DMS-0097881
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society