Lineability and spaceability of sets of functions on

Authors:
Richard Aron, V. I. Gurariy and J. B. Seoane

Journal:
Proc. Amer. Math. Soc. **133** (2005), 795-803

MSC (2000):
Primary 26A27, 46E10, 46E15

Published electronically:
August 24, 2004

MathSciNet review:
2113929

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that there is an infinite-dimensional vector space of differentiable functions on every non-zero element of which is nowhere monotone. We also show that there is a vector space of dimension of functions every non-zero element of which is everywhere surjective.

**1.**Richard Aron, Raquel Gonzalo, and Andriy Zagorodnyuk,*Zeros of real polynomials*, Linear and Multilinear Algebra**48**(2000), no. 2, 107–115. MR**1813438**, 10.1080/03081080008818662**2.**P. Enflo, V. I Gurariy,*On lineability and spaceability of sets in function spaces,*to appear.**3.**V. P. Fonf, V. I. Gurariy, and M. I. Kadets,*An infinite dimensional subspace of 𝐶[0,1] consisting of nowhere differentiable functions*, C. R. Acad. Bulgare Sci.**52**(1999), no. 11-12, 13–16. MR**1738120****4.**Bernard R. Gelbaum and John M. H. Olmsted,*Counterexamples in analysis*, The Mathesis Series, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1964. MR**0169961****5.**V. I. Gurariĭ,*Subspaces and bases in spaces of continuous functions*, Dokl. Akad. Nauk SSSR**167**(1966), 971–973 (Russian). MR**0199674****6.**V. I. Gurariĭ,*Subspaces of differentiable functions in the space of continuous functions*, Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp.**4**(1967), 116–121 (Russian). MR**0220048****7.**V. I. Gurariĭ,*Linear spaces composed of everywhere nondifferentiable functions*, C. R. Acad. Bulgare Sci.**44**(1991), no. 5, 13–16 (Russian). MR**1127022****8.**V. I. Gurariy, W. Lusky,*Geometry of Müntz spaces,*Lecture Notes in Mathematics, Springer-Verlag, to appear.**9.**Stanislav Hencl,*Isometrical embeddings of separable Banach spaces into the set of nowhere approximatively differentiable and nowhere Hölder functions*, Proc. Amer. Math. Soc.**128**(2000), no. 12, 3505–3511. MR**1707147**, 10.1090/S0002-9939-00-05595-7**10.**Y. Katznelson and Karl Stromberg,*Everywhere differentiable, nowhere monotone, functions*, Amer. Math. Monthly**81**(1974), 349–354. MR**0335701****11.**H. Lebesgue,*Leçons sur l'intégration*, Gauthier-Villars (1904).**12.**L. Rodríguez-Piazza,*Every separable Banach space is isometric to a space of continuous nowhere differentiable functions*, Proc. Amer. Math. Soc.**123**(1995), no. 12, 3649–3654. MR**1328375**, 10.1090/S0002-9939-1995-1328375-8

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
26A27,
46E10,
46E15

Retrieve articles in all journals with MSC (2000): 26A27, 46E10, 46E15

Additional Information

**Richard Aron**

Affiliation:
Department of Mathematics, Kent State University, Kent, Ohio 44242

Email:
aron@math.kent.edu

**V. I. Gurariy**

Affiliation:
Department of Mathematics, Kent State University, Kent, Ohio 44242

Email:
gurariy@math.kent.edu

**J. B. Seoane**

Affiliation:
Department of Mathematics, Kent State University, Kent, Ohio 44242

Email:
jseoane@math.kent.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-04-07533-1

Received by editor(s):
March 26, 2003

Received by editor(s) in revised form:
October 28, 2003

Published electronically:
August 24, 2004

Additional Notes:
The author thanks Departamento de Matemáticas of the Universidad de Cádiz (Spain), especially Antonio Aizpuru, Fernando León, Javier Pérez, and the rest of the members of the group FQM-257.

Communicated by:
N. Tomczak-Jaegermann

Article copyright:
© Copyright 2004
American Mathematical Society