Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Perturbed smooth Lipschitz extensions of uniformly continuous functions on Banach spaces


Authors: Daniel Azagra, Robb Fry and Alejandro Montesinos
Journal: Proc. Amer. Math. Soc. 133 (2005), 727-734
MSC (2000): Primary 46B20
DOI: https://doi.org/10.1090/S0002-9939-04-07715-9
Published electronically: October 21, 2004
MathSciNet review: 2113921
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if $Y$ is a separable subspace of a Banach space $X$such that both $X$ and the quotient $X/Y$ have $C^p$-smooth Lipschitz bump functions, and $U$ is a bounded open subset of $X$, then, for every uniformly continuous function $f:Y\cap U\to\mathbb{R}$ and every $\varepsilon>0$, there exists a $C^p$-smooth Lipschitz function $F:X\to\mathbb{R}$ such that $\vert F(y)-f(y)\vert\leq\varepsilon$ for every $y\in Y\cap U$.


References [Enhancements On Off] (What's this?)

  • 1. D. Azagra and A. Montesinos, Starlike bodies and diffeomorphisms deleting points in Banach spaces, to appear in Extracta Math.
  • 2. Y. Benyamini and J. Lindenstrauss, Geometrical Nonlinear Functional Analysis, Volume I, Amer. Math. Soc. Colloq. Publ., Vol. 48, Amer. Math. Soc., Providence, 2000. MR 1727673 (2001b:46001)
  • 3. M. Cepedello, Approximation of Lipschitz functions by $\Delta$-convex functions in Banach spaces. Israel J. Math. 106 (1998), 269-284. MR 1656905 (99j:46016)
  • 4. R. Deville, V. Fonf, P. Hájek, Analytic and polyhedral approximation of convex bodies in separable polyhedral Banach spaces. Israel J. Math. 105 (1998), 139-154. MR 1639743 (99h:46006)
  • 5. R. Deville, V. Fonf, P. Hájek, Analytic and $C\sp k$approximations of norms in separable Banach spaces. Studia Math. 120 (1996), no. 1, 61-74. MR 1398174 (97h:46012)
  • 6. R. Deville, G. Godefroy, and V. Zizler, Smoothness and renormings in Banach spaces, vol. 64, Pitman Monographies and Surveys in Pure and Applied Mathematics, 1993. MR 1211634 (94d:46012)
  • 7. R. Fry, Approximation by functions with bounded derivative on Banach spaces, to appear in Bull. Australian Math. Soc. MR 2040055
  • 8. M. Leduc, Densité de certaines familles d'hyperplans tangents, C. R. Acad. Sci. (Paris) Ser. A 270 (1970), 326-328. MR 0276733 (43:2473)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B20

Retrieve articles in all journals with MSC (2000): 46B20


Additional Information

Daniel Azagra
Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense, 28040 Madrid, Spain
Email: daniel_azagra@mat.ucm.es

Robb Fry
Affiliation: Department of Mathematics and Computer Science, St. Francis Xavier University, P.O. Box 5000, Antigonish, Nova Scotia, Canada B2G 2W5
Email: rfry@stfx.ca

Alejandro Montesinos
Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense, 28040 Madrid, Spain
Email: a_montesinos@mat.ucm.es

DOI: https://doi.org/10.1090/S0002-9939-04-07715-9
Received by editor(s): January 26, 2003
Published electronically: October 21, 2004
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society