Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A general rearrangement inequality


Author: Cristina Draghici
Journal: Proc. Amer. Math. Soc. 133 (2005), 735-743
MSC (2000): Primary 26D15, 28A25
DOI: https://doi.org/10.1090/S0002-9939-04-07729-9
Published electronically: October 21, 2004
MathSciNet review: 2113922
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a general rearrangement inequality for multiple integrals, using polarization. We introduce a special class of kernels for which the product inequality holds, and then we prove that it also holds when the product is replaced by a so-called function $AL_m$.


References [Enhancements On Off] (What's this?)

  • 1. F. J. Almgren, Jr. and E. H. Lieb.
    Symmetric decreasing rearrangement is sometimes continuous.
    J. Amer. Math. Soc., 2(4):683-773, 1989. MR 1002633 (90f:49038)
  • 2. A. Baernstein, II and B. A. Taylor.
    Spherical rearrangements, subharmonic functions, and $\sp*$-functions in $n$-space.
    Duke Math. J., 43(2):245-268, 1976. MR 0402083 (53:5906)
  • 3. A. Baernstein II.
    A unified approach to symmetrization.
    Partial Differential Equations of Elliptic Type, eds. A.Alvino et al, Symposia Mathematica, Cambridge Univ.Press, 35:47-91, 1995. MR 1297773 (96e:26019)
  • 4. W. Beckner.
    Sobolev inequalities, the Poisson semigroup, and analysis on the sphere $S\sp n$.
    Proc. Nat. Acad. Sci. U.S.A., 89(11):4816-4819, 1992. MR 1164616 (93d:26018)
  • 5. H. J. Brascamp, E. H. Lieb, and J. M. Luttinger.
    A general rearrangement inequality for multiple integrals.
    J. Funct. Anal., 17:227-237, 1974. MR 0346109 (49:10835)
  • 6. F. Brock.
    A general rearrangement inequality à la Hardy-Littlewood.
    J. Inequal. Appl., 5(4):309-320, 2000. MR 1784980 (2001d:26046)
  • 7. F. Brock and A. Y. Solynin.
    An approach to symmetrization via polarization.
    Trans. Amer. Math. Soc., 352(4):1759-1796, 2000. MR 1695019 (2001a:26014)
  • 8. A. Burchard and M. Schmuckenschläger.
    Comparison theorems for exit times.
    Geom. Funct. Anal., 11(4):651-692, 2001. MR 1866798 (2002h:60168)
  • 9. M. Christ.
    Estimates for the $k$-plane transform.
    Indiana Univ. Math. J., 33(6):891-910, 1984. MR 0763948 (86k:44004)
  • 10. C. Draghici.
    Polarization and rearrangement inequalities for multiple integrals.
    Ph.D. thesis, Washington University, 2003.
  • 11. C. Draghici.
    Rearrangement inequalities with applications to ratios of heat kernels.
    preprint, 2003.
  • 12. G. B. Folland.
    Real analysis.
    Pure and Applied Mathematics. John Wiley & Sons Inc., New York, 1984.
    Modern techniques and their applications, A Wiley-Interscience Publication. MR 0767633 (86k:28001)
  • 13. G. H. Hardy, J. E. Littlewood, and G. Pólya.
    Inequalities.
    Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1988.
    Reprint of the 1952 edition. MR 0944909 (89d:26016)
  • 14. C. Morpurgo.
    Sharp inequalities for functional integrals and traces of conformally invariant operators.
    Duke Math. J., 114(3):477-554, 2002. MR 1924571 (2004f:58035)
  • 15. R. Osserman.
    The isoperimetric inequality.
    Bull. Amer. Math. Soc., 84(6):1182-1238, 1978. MR 0500557 (58:18161)
  • 16. R. E. Pfiefer.
    Maximum and minimum sets for some geometric mean values.
    J. Theoret. Probab., 3(2):169-179, 1990. MR 1046328 (91d:60028)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 26D15, 28A25

Retrieve articles in all journals with MSC (2000): 26D15, 28A25


Additional Information

Cristina Draghici
Affiliation: Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008
Email: cristina.draghici@wmich.edu

DOI: https://doi.org/10.1090/S0002-9939-04-07729-9
Keywords: Symmetrization, rearrangement, integral inequality
Received by editor(s): September 12, 2003
Published electronically: October 21, 2004
Communicated by: David Preiss
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society