δ-FUNCTION OF AN OPERATOR: A WHITE NOISE APPROACH

CAISHI WANG, ZHIYUAN HUANG, AND XIANGJUN WANG

(Communicated by Richard C. Bradley)

ABSTRACT. Let \((E) \subset (L^2) \subset (E)^*\) be the canonical framework of white noise analysis over the Gel’fand triple \(S(\mathbb{R}) \subset L^2(\mathbb{R}) \subset S^*(\mathbb{R})\) and \(\mathcal{L} \equiv \mathcal{L}((E),(E)^*)\) be the space of continuous linear operators from \((E)\) to \((E)^*\). Let \(Q\) be a self-adjoint operator in \((L^2)\) with spectral representation \(Q = \int_{\mathbb{R}} \lambda P_Q(d\lambda)\). In this paper, it is proved that under appropriate conditions upon \(Q\), there exists a unique linear mapping \(Z : S^*(\mathbb{R}) \mapsto \mathcal{L}\) such that \(Z(f) = \int_{\mathbb{R}} f(\lambda) P_Q(d\lambda)\) for each \(f \in S(\mathbb{R})\). The mapping is then naturally used to define \(\delta(Q)\) as \(Z(\delta)\), where \(\delta\) is the Dirac δ-function. Finally, properties of the mapping \(Z\) are investigated and several results are obtained.

1. Introduction

Let \(\delta\) be the Dirac δ-function, which is a Schwartz generalized function, and \(Q\) an observable, i.e., a self-adjoint operator in a Hilbert space. Then \(\delta(Q)\), called the δ-function of \(Q\), is of physical significance (cf. [1]). However, from the mathematical point of view, it is a very singular object. What is the mathematical meaning of \(\delta(Q)\) which is both reasonable and rigorous? In [1], the authors gave an interpretation in the context of Hilbert space theory.

On the other hand, white noise analysis initiated by Hida [2], which is essentially an infinite-dimensional analogue of Schwartz generalized function theory, has been considerably developed and successfully applied to many fields including stochastic analysis and quantum physics (see, e.g., [2, 3, 4, 5], [7, 8], [12] and references cited therein). The mathematical framework of the theory is the Gel’fand triple \((E) \subset (L^2) \subset (E)^*\)

\[\delta(Q)\] is defined as \(Z(\delta)\), where \(\delta\) is the Dirac δ-function. Finally, properties of the mapping \(Z\) are investigated and several results are obtained.

Received by the editors December 10, 2002 and, in revised form, September 16, 2003.

2000 Mathematics Subject Classification. Primary 60H40.

Key words and phrases. White noise analysis, self-adjoint operator, Schwartz generalized function.
we recall some necessary notions, notation and facts in white noise analysis. In Section 3, we first prove that for a self-adjoint operator Q in (L^2) with spectral representation $Q = \int_{\mathbb{R}} \lambda P_Q(d\lambda)$, under appropriate conditions upon Q there exists a unique linear mapping $Z : S^*(\mathbb{R}) \rightarrow \mathcal{L}$ such that $Z(f) = \int_{\mathbb{R}} f(\lambda) P_Q(d\lambda)$ for each $f \in S(\mathbb{R})$. We then naturally use the mapping Z to define $\delta(Q)$ as $Z(\delta)$. Finally, we show that the mapping $Z : S^*(\mathbb{R}) \rightarrow \mathcal{L}$ is continuous and positivity-preserving.

2. Framework of white noise analysis

In this section we briefly recall some notions, notation and facts in white noise analysis. For details see [2], [5], [7] and [9].

We first fix some general notation. Throughout the paper, \mathbb{R} and \mathbb{C} stand for the real line and complex plane, respectively. For any real locally convex space V, we denote by $V_\mathbb{C}$ the complexification of V. Let $\langle \cdot, \cdot \rangle$ be the canonical bilinear form on $V^* \times V$; then the canonical bilinear forms on $V_\mathbb{C}^* \times V_\mathbb{C}$ and $(V_\mathbb{C}^*)^* \times V_\mathbb{C}^*$ are still denoted by $\langle \cdot, \cdot \rangle$. Similarly, if V is a real Hilbert space with norm $|\cdot|$, then the norms of $V_\mathbb{C}$ and $V_\mathbb{C}^*$ are also denoted by the same symbol $|\cdot|$. Now let $H \equiv L^2(\mathbb{R}, dt; \mathbb{R})$ be the Hilbert space of real-valued square integrable functions on \mathbb{R} with norm $|\cdot|_0$ and inner product $\langle \cdot, \cdot \rangle$. Let $A = 1 + t^2 - d^2/dt^2$ be the harmonic oscillator. Then A has a self-adjoint extension in H, which is still denoted by A.

For each integer p, let E_p be the completion of Dom A^p with respect to the Hilbertian norm $|\cdot|_p = |A^p \cdot|_0$. Then E_p and E_{-p} can be regarded as each other’s dual if we identify H with its dual. Let E be the projective limit of $\{E_p | p \geq 0\}$ and E^* the topological dual of E. Then E is a nuclear space and E^* is the inductive limit of $\{E_{-p} | p \geq 0\}$. Hence we have a real Gel’fand triple $E \subset H \subset E^*$. It is known (cf. [2]) that E and E^* coincide with Schwartz rapidly decreasing function space $S(\mathbb{R})$ and generalized function space $S^*(\mathbb{R})$, respectively. We denote by $\langle \cdot, \cdot \rangle$ the canonical bilinear form on $E^* \times E$, which is consistent with the inner product of H.

Let μ be the standard Gaussian measure on E^*, i.e., its characteristic function is

$$\int_{E^*} e^{i\langle x, f \rangle} \mu(dx) = e^{-\frac{1}{2}|f|_0^2}, \quad f \in E.$$ (2.1)

The measure space (E^*, μ) is known as white noise. Let $(L^2) \equiv L^2(E^*, \mu; \mathbb{C})$ be the Hilbert space of complex-valued μ-square integrable functionals on E^* with the inner product (\cdot, \cdot) and norm $\|\cdot\|_0$. Then, by the well-known Wiener-Itô-Segal isomorphism theorem, for each $\varphi \in (L^2)$ there exists a unique sequence $(f_n)_{n=0}^\infty$ with $f_n \in H_\mathbb{C}^\otimes n$ such that $\varphi = \sum_{n=0}^\infty I_n(f_n)$ in norm $\|\cdot\|_0$ and

$$\|\varphi\|_0^2 = \sum_{n=0}^\infty n! |f_n|^2$$ (2.2)

where $I_n(f_n)$ denotes the multiple Wiener integral of order n with kernel f_n.

Note that the harmonic oscillator A also has a self-adjoint extension in $H_\mathbb{C}$, which is still denoted by A. Let $\Gamma(A)$ be the second quantization operator of A defined by

$$\Gamma(A)\varphi = \sum_{n=0}^\infty I_n(A^\otimes n f_n)$$ (2.3)
where \(\varphi = \sum_{n=0}^{\infty} I_n(f_n) \). Then \(\Gamma(A) \) is a positive self-adjoint operator with Hilbert-Schmidt inverse in \((L^2) \).

Similarly, for each integer \(p \), let \((E_p) \) be the completion of \(\text{Dom} \Gamma(A)^p \) with respect to the Hilbertian norm \(\| \cdot \|_p = \| \Gamma(A)^p \cdot \|_0 \). Then \((E_p) \) becomes a complex Hilbert space. In particular, \((E_0) = (L^2) \). Let \((E) \) be the projective limit of \(\{ (E_p) \mid p \geq 0 \} \) and \((E)^* \) the inductive limit of \(\{ (E_{-p}) \mid p \geq 0 \} \). Then \((E) \) and \((E)^* \) can be regarded as each other’s dual. Moreover, \((E) \) is a nuclear space and we come to a complex Gelfand triple

\[
(E) \subset (L^2) \subset (E)^* ,
\]

which is known as the canonical framework of white noise analysis. Elements of \((E) \) (resp. \((E)^* \)) are called Hida testing (resp. generalized) functionals. In the following, we denote by \(\langle \cdot, \cdot \rangle \) the canonical bilinear form on \((E)^* \times (E) \).

For \(\xi \in E_C \), the exponential functional \(\phi_\xi \) associated with \(\xi \) is defined as

\[
\phi_\xi(x) = e^{\langle x, \xi \rangle - \langle \xi, \xi \rangle / 2} = \sum_{n=0}^{\infty} \langle x^\otimes n, \frac{1}{n!} \xi^\otimes n \rangle, \quad x \in (E)^*.
\]

It is known that the set \(\{ \phi_\xi \mid \xi \in E_C \} \) is total in the Hilbert space \((E_p) \) for each integer \(p \). Hence \(\text{Span}\{ \phi_\xi \mid \xi \in E_C \} \) is a dense subspace of \((E) \).

Continuous linear operators from \((E) \) to \((E)^* \) are usually called generalized operators. The space of all generalized operators is denoted by \(\mathcal{L} \equiv \mathcal{L}((E), (E)^*) \). For \(X \in \mathcal{L} \), its symbol \(\tilde{X} \) is defined as

\[
\tilde{X}(\xi, \eta) = \langle X \phi_\xi, \phi_\eta \rangle, \quad \xi, \eta \in E_C.
\]

The next lemma (cf. [8] and [9]) will be used later.

Lemma 2.1. Let \(\{ X_n \}_{n \geq 1} \subset \mathcal{L} \) be such that

1. \(\forall \xi, \eta \in E_C \), the sequence \(\{ \tilde{X}_n(\xi, \eta) \}_{n \geq 1} \) is convergent in \(\mathbb{C} \),
2. there exist constants \(a, k, p \geq 0 \) such that

\[
\sup_{n \geq 1} |\tilde{X}_n(\xi, \eta)| \leq a \exp\{k(|\xi|^2_p + |\eta|^2_p)\}, \quad \xi, \eta \in E_C.
\]

Then there exists a unique \(X \in \mathcal{L} \) such that \(X_n \longrightarrow X \) in \(\mathcal{L} \).

3. \(\delta \)-FUNCTION OF AN OPERATOR

We first make some necessary assumptions. Let \(\mathcal{B}(\mathbb{R}) \) be the Borel \(\sigma \)-field of the real line \(\mathbb{R} \) and \(\mathcal{P}([L^2]) \) the set of projections in \((L^2) \).

Let \(Q \) be a given self-adjoint operator in \((L^2) \) with spectral representation

\[
Q = \int_{\mathbb{R}} \lambda P_Q(d\lambda),
\]

where \(P_Q : \mathcal{B}(\mathbb{R}) \longrightarrow \mathcal{P}([L^2]) \) is the spectral measure of \(Q \) (cf. [10]). It is well known that for a Borel measurable function \(f \) on \(\mathbb{R} \), \(f(Q) = \int_{\mathbb{R}} f(\lambda) P_Q(d\lambda) \) makes sense as a densely defined operator in \((L^2) \). Moreover, \(f(Q) \) is a bounded operator in \((L^2) \) if \(f \) is a bounded Borel measurable function (see [10] for details).

For each \(\xi, \eta \in E_C \), define \(\nu_{\xi, \eta}^Q : \mathcal{B}(\mathbb{R}) \longrightarrow \mathbb{C} \) as

\[
\nu_{\xi, \eta}^Q(S) = \langle P_Q(S) \phi_\xi, \phi_\eta \rangle, \quad S \in \mathcal{B}(\mathbb{R}).
\]
Obviously $\nu_{\xi, \eta}^Q$ is a complex-valued measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Throughout the section, we make the following hypothesis.

Hypothesis. For each $\xi, \eta \in E_C$, there exists a function $\rho_{\xi, \eta}^Q \in E_C$ such that

\[(3.3) \quad \nu_{\xi, \eta}^Q(S) = \int_S \rho_{\xi, \eta}^Q(\lambda) d\lambda, \quad S \in \mathcal{B}(\mathbb{R}).\]

We call the function $\rho_{\xi, \eta}^Q$ the spectral density of the operator Q associated with ξ, η.

Proposition 3.1. The spectral density $\rho_{\xi, \eta}^Q$ is positive definite in the sense that for each $n \geq 1$ and any $z_i \in \mathbb{C}, \xi_i \in E_C, i = 1, 2, \cdots, n$,

\[(3.4) \quad \sum_{i,j=1}^n z_i \overline{z_j} \rho_{\xi_i, \xi_j}^Q \geq 0 \quad \text{as a function on } \mathbb{R}.\]

Proof. Let $\varphi = \sum_{i=1}^n z_i \phi_{\xi_i}$. Then for each $S \in \mathcal{B}(\mathbb{R})$, we have

\[
\int_S \sum_{i,j=1}^n z_i \overline{z_j} \rho_{\xi_i, \xi_j}^Q(\lambda) d\lambda = \sum_{i,j=1}^n z_i \overline{z_j} \nu_{\xi_i, \xi_j}^Q(S)
\]

\[
= \sum_{i,j=1}^n z_i \overline{z_j} \left\langle \left\langle P_Q(S) \phi_{\xi_i}, \phi_{\xi_j} \right\rangle \right\rangle
\]

\[
= \left\langle \left\langle P_Q(S) \varphi, \varphi \right\rangle \right\rangle \quad \text{as a function on } \mathbb{R}.
\]

where $\| \cdot \|_0$ denotes the norm of (L^2). Hence $\sum_{i,j=1}^n z_i \overline{z_j} \rho_{\xi_i, \xi_j}^Q \geq 0$ as a function on \mathbb{R}. \(\square\)

Proposition 3.2. Let $\text{Dom} Q^n$ be the domain of Q^n, where $n \geq 0$. Then $\{ \phi_\xi \mid \xi \in E_C \} \subset \text{Dom} Q^n$.

Proof. Let $\xi \in E_C$. By Proposition 3.1 and the Hypothesis, we have

\[
0 \leq \int_{\mathbb{R}} \lambda^{2n} \rho_{\xi, \xi}^Q(\lambda) d\lambda < +\infty.
\]

Hence

\[
\int_{\mathbb{R}} |\lambda|^2 \left\langle \left\langle P_Q(d\lambda) \phi_\xi, \phi_\xi \right\rangle \right\rangle = \int_{\mathbb{R}} \lambda^{2n} \left\langle \left\langle P_Q(d\lambda) \phi_\xi, \phi_\xi \right\rangle \right\rangle
\]

\[
= \int_{\mathbb{R}} \lambda^{2n} \rho_{\xi, \xi}^Q(d\lambda)
\]

\[
< +\infty,
\]

which implies that $\phi_\xi \in \text{Dom} Q^n$. \(\square\)

The above propositions show useful properties of the operator Q. Now we use them to define Schwartz generalized functions of Q.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Theorem 3.3. Assume that the spectral density $\rho_{\xi,\eta}^Q$ satisfies that for each $q \geq 0$ there exist constants a, k, $p \geq 0$ such that
\[|\rho_{\xi,\eta}^Q|_q \leq k \exp\{a(\xi^2_p + \eta^2_p)\}, \quad \xi, \eta \in E_C. \]
Then for each Schwartz generalized function $\omega \in E^* = S^*(\mathbb{R})$, there exists a unique generalized operator $X_Q^\omega \in \mathcal{L}$ such that
\[\hat{X}_Q^\omega(\xi,\eta) = \langle \omega, \rho_{\xi,\eta}^Q \rangle, \quad \xi, \eta \in E_C. \]

Proof. Obviously (3.6) implies the uniqueness of X_Q^ω. Now we prove the existence. Let $\omega \in E^*$. Then there is $q \geq 0$ such that $\omega \in E_{-q}$. Since E is dense in E_{-q}, we can take a sequence $\{f_n\}_{n \geq 1} \subset E$ such that $f_n \to \omega$ in the norm $|\cdot|_{-q}$. For each $n \geq 1$, $f_n(Q) = \int_{\mathbb{R}} f_n(\lambda) P_Q(d\lambda)$ is a bounded linear operator on (L^2) since f_n is a bounded function. Hence $f_n(Q) \in \mathcal{L}$ for all $n \geq 1$.

We assert that the sequence $\{f_n(Q)\}$ satisfies the two conditions of Lemma 2.1. In fact, for each $\xi, \eta \in E_C$, we have
\[
\lim_{n \to \infty} f_n(Q)(\xi,\eta) = \lim_{n \to \infty} \int_{\mathbb{R}} f_n(\lambda) \nu_{\xi,\eta}^Q(d\lambda) = \lim_{n \to \infty} \int_{\mathbb{R}} f_n(\lambda) \rho_{\xi,\eta}^Q(\lambda) d\lambda = \lim_{n \to \infty} \langle f_n, \rho_{\xi,\eta}^Q \rangle = \langle \omega, \rho_{\xi,\eta}^Q \rangle.
\]

On the other hand, by the assumption we have
\[
|f_n(Q)(\xi,\eta)| = |\langle f_n, \rho_{\xi,\eta}^Q \rangle| \\
\leq |f_n|_q |\rho_{\xi,\eta}^Q|_q \\
\leq \alpha k \exp\{a(\xi^2_p + \eta^2_p)\}
\]
\[\forall \xi, \eta \in E_C, \text{ where } \alpha = \sup_{n \geq 1} |f_n|_{-q} < \infty \text{ since } \{f_n\}_{n \geq 1} \text{ is convergent in the norm } |\cdot|_{-q}.
\]

By Lemma 2.1 there exists a generalized operator, denoted by X_Q^ω, such that
\[f_n(Q) \to X_Q^\omega \text{ in } \mathcal{L}, \text{ which implies } \lim_{n \to \infty} f_n(Q)(\xi,\eta) = X_Q^\omega(\xi,\eta), \quad \forall \xi, \eta \in E_C,
\]
which implies (3.6).

Proposition 3.4. Let $\rho_{\xi,\eta}^Q$ be as in Theorem 3.3 and $f \in E = S(\mathbb{R})$. Then
\[X_Q^f = f(Q) \quad \text{(as generalized operators)}\]
where $f(Q) = \int_{\mathbb{R}} f(\lambda) P_Q(d\lambda)$, which is well known as the f-function of Q.

Proof. $f(Q)$ is a bounded operator on (L^2), which means $f(Q) \in \mathcal{L}$. For each $\xi, \eta \in E_C$, by a straightforward computation, we find that
\[f(Q)(\xi,\eta) = \hat{X}_Q^f(\xi,\eta), \]
which implies (3.7).
Motivated by Proposition 3.4, we now give the definition of Schwartz generalized functions of the operator \(Q \) as follows.

Definition 3.1. Let \(\rho_{\xi,\eta}^Q \) be as in Theorem 3.3. For a Schwartz generalized function \(\omega \in E^* \), we define
\[
(3.8) \quad \omega(Q) = X^Q_{\omega}
\]
and call it the \(\omega \)-function of \(Q \).

Remark 3.1. Let \(\delta \) be the Dirac \(\delta \)-function. Then \(\delta \in E^* \). Hence, under the above conditions upon \(Q \) and \(\rho_{\xi,\eta}^Q \), \(\delta(Q) \) makes sense as a generalized operator.

In the following, we investigate properties of the Schwartz generalized functions of \(Q \) defined above.

Theorem 3.5. Let \(\rho_{\xi,\eta}^Q \) be as in Theorem 3.3 and \(n \geq 0 \). Let \(\omega_n \in E^* \) be defined by
\[
(3.9) \quad \langle \omega_n, f \rangle = \int_\mathbb{R} \lambda^n f(\lambda) \, d\lambda, \quad f \in E.
\]
Then
\[
(3.10) \quad \omega_n(Q)\varphi = Q^n\varphi, \quad \varphi \in D
\]
where \(D \equiv \text{Span}\{ \phi_\xi \mid \xi \in E_\mathbb{C} \} \) is the linear subspace of \(E \) spanned by \(\{ \phi_\xi \mid \xi \in E_\mathbb{C} \} \).

Proof. Firstly, by Proposition 3.2, we see that \(D \subset \text{Dom} Q^n \). On the other hand, for each \(\xi, \eta \in E_\mathbb{C} \), we have
\[
\langle Q^n\phi_\xi, \phi_\eta \rangle = \left(\int_\mathbb{R} \lambda^n P_Q(d\lambda)\phi_\xi, \phi_\eta \right),
\]
\[
= \int_\mathbb{R} \lambda^n \langle P_Q(d\lambda)\phi_\xi, \phi_\eta \rangle,
\]
\[
= \int_\mathbb{R} \lambda^n \rho_{\xi,\eta}^Q(\lambda) \, d\lambda,
\]
\[
= \langle \omega_n, \rho_{\xi,\eta}^Q \rangle = \langle \omega_n(Q)\phi_\xi, \phi_\eta \rangle,
\]
where \(\langle \cdot, \cdot \rangle \) means the inner product of \((L^2) \). Hence (3.10) follows. \(\square \)

Remark 3.2. Let \(\rho_{\xi,\eta}^Q \) be as in Theorem 3.3. Then from Theorem 3.5 we see that \(Q \varphi = \omega_1(Q) \varphi, \quad \varphi \in D \).

Note that \(D \) is not only a dense subspace of \(E \) but also a dense subspace of \((L^2) \). Hence \(Q \) itself can be viewed as a generalized operator.

Theorem 3.6. Let \(\rho_{\xi,\eta}^Q \) be as in Theorem 3.3. Define a mapping \(Z : E^* \rightarrow \mathcal{L} \) as follows:
\[
(3.12) \quad Z(\omega) = \omega(Q), \quad \omega \in E^*.
\]
Then \(Z : E^* \rightarrow \mathcal{L} \) is a continuous linear mapping.
Proof. Z is obviously linear. We now prove its continuity. Let $\{\omega^{(k)}\}_{k \geq 1} \subset E^*$ and $\omega \in E^*$ be such that $\omega^{(k)} \longrightarrow \omega$ in E^*. Then there exists some $q \geq 0$ such that $\omega, \omega^{(k)} \in E_{-q}$, $k \geq 1$ and

$$\omega(k) \longrightarrow \omega \quad \text{(in the norm } | \cdot |_{-q}).$$

With an argument similar to that in the proof of Theorem 3.3 we can get a generalized operator X such that

$$Z(\omega^{(k)}) = \omega^{(k)}(Q) \longrightarrow X \quad \text{(in } L).$$

On the other hand, we have

$$\hat{X}(\xi, \eta) = \lim_{k \to \infty} Z(\omega^{(k)})(\xi, \eta)$$

$$= \lim_{k \to \infty} \langle \omega^{(k)}, \rho^Q_{\xi, \eta} \rangle$$

$$= \langle \omega, \rho^Q_{\xi, \eta} \rangle$$

$$= \langle \omega(Q)(\xi, \eta) \rangle$$

$$= \langle \hat{Z}(\omega)(\xi, \eta) \rangle,$$

$\forall \xi, \eta \in E_C$, which implies $X = Z(\omega)$. Hence $Z(\omega^{(k)}) \longrightarrow Z(\omega)$ in L. □

Theorem 3.7. Let $\rho^Q_{\xi, \eta}$ be as in Theorem 3.3 and $Z : E^* \longrightarrow L$ as in Theorem 3.6. Then Z is positivity-preserving in the sense that

$$\langle \langle Z(\omega) \varphi, \varphi \rangle \rangle \geq 0, \quad \varphi \in (E)$$

whenever $\omega \in E^*$ and $\omega \geq 0$.

Proof. Let $\omega \in E^*$ with $\omega \geq 0$. To prove (3.13), we only need to show that for each $n \geq 1$ and any $z_i \in \mathbb{C}, \xi_i \in E_C, i = 1, 2, \ldots, n$,

$$\langle \langle Z(\omega) \sum_{i=1}^{n} z_i \phi_{\xi_i}, \sum_{i=1}^{n} z_i \phi_{\xi_i} \rangle \rangle \geq 0.$$

In fact, we have

$$\langle \langle Z(\omega) \sum_{i=1}^{n} z_i \phi_{\xi_i}, \sum_{i=1}^{n} z_i \phi_{\xi_i} \rangle \rangle = \sum_{i,j=1}^{n} z_i \mathbf{\overline{z}}_j \langle Z(\omega) \phi_{\xi_i}, \phi_{\xi_j} \rangle$$

$$= \sum_{i,j=1}^{n} z_i \mathbf{\overline{z}}_j \langle \omega, \rho^Q_{\xi_i, \xi_j} \rangle$$

$$= \langle \omega, \sum_{i,j=1}^{n} z_i \mathbf{\overline{z}}_j \rho^Q_{\xi_i, \xi_j} \rangle$$

$$\geq 0,$$

where, by Proposition 3.1, $\sum_{i,j=1}^{n} z_i \mathbf{\overline{z}}_j \rho^Q_{\xi_i, \xi_j} \geq 0$ as a function on \mathbb{R}. □

By Theorem 3.7 we immediately come to the following proposition.

Proposition 3.8. $\delta(Q)$ is positive, i.e., $\langle \langle \delta(Q) \varphi, \varphi \rangle \rangle \geq 0, \forall \varphi \in (E)$.
Remark 3.3. The physical meaning of the fact that $\delta(Q)$ is positive can be interpreted as follows. From the physical point of view, the self-adjoint operator Q stands for an observable. Naturally, as a generalized operator, $\delta(Q)$ can be viewed as an observable associated with the observable Q. Hence the positivity property of $\delta(Q)$ implies that it is a positive observable.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (10171035), Natural Science Foundation of Gansu Province, China (ZS021-A25-004-Z) and NWNU-KJCXGC-212. The authors are grateful for their support.

References

Department of Mathematics, Northwest Normal University, Lanzhou, Gansu 730070, People’s Republic of China

E-mail address: wangcs@nwnu.edu.cn

Department of Mathematics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China

E-mail address: zyhuan@hust.edu.cn

Department of Mathematics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China

E-mail address: x.j.wang@yeah.net