Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Compact homomorphisms of URM algebras


Authors: F. Behrouzi and H. Mahyar
Journal: Proc. Amer. Math. Soc. 133 (2005), 1205-1212
MSC (2000): Primary 46J10; Secondary 46J15
DOI: https://doi.org/10.1090/S0002-9939-04-07592-6
Published electronically: October 18, 2004
MathSciNet review: 2117223
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show when a homomorphism from a URM algebra into a uniform algebra or into a regular Banach algebra is weakly compact or compact. We prove that every homomorphism from URM algebras into $D^1(X)$ is compact. Finally, we characterize the spectra of compact endomorphisms of URM algebras defined on a connected compact Hausdorff space $X$.


References [Enhancements On Off] (What's this?)

  • 1. R. Aron, P. Galindo and M. Lindström, Compact homomorphisms between algebras of analytic functions, Studia Math. 123 (1997), 235-247. MR 98h:46053
  • 2. F. Behrouzi, Homomorphisms of certain Banach function algebras, Proc. Indian Acad. Sci. (Math. Sci.) 112 (2002), 331-336.MR 2003e:46083
  • 3. H. G. Dales and A. M. Davie, Quasianalytic Banach function algebras, J. Funct. Anal. 13 (1973), 28-50. MR 49:7782
  • 4. N. Dunford and J. T. Schwartz, Linear Operators, Part I, General Theory, Interscience Publ. New York, 1958. MR 90g:47001a
  • 5. J. F. Feinstein and H. Kamowitz, Compact endomorphisms of $H^{\infty}(D)$, Studia Math. 136 (1999), 87-90. MR 2001h:46093
  • 6. P. Galindo and M. Lindström, Gleason parts and weakly compact homomorphisms between uniform Banach algebras, Monatsh. Math. 128 (1999), 89-97. MR 2002a:46069
  • 7. T. G. Honary and H. Mahyar, Approximation in Lipschitz algebras of infinitely differentiable functions, Bull. Korean Math. Soc. 36 (1999), 629-636. MR 2001b:46083
  • 8. H. Kamowitz, Compact endomorphisms of Banach algebras, Pacific J. Math. 89 (1980), 313-325. MR 82c:46063
  • 9. H. Kamowitz and S. Scheinberg, Homomorphisms of Banach algebras with range in $C^1([0,1]),$ Inter. J. Math. 2 (1994), 201-212. MR 95b:46073
  • 10. G. M. Leibowitz, Lectures on Complex Function Algebras, Scott, Foresman and Co., Glenview, Illinois, 1970. MR 55:1072
  • 11. S. Ohno and J. Wada, Compact homomorphisms on function algebras, Tokyo J. Math. 4 (1981), 105-112. MR 82i:46079
  • 12. D. W. Swanton, Compact composition operators on $B(D)$, Proc. Amer. Math. Soc. 56 (1976), 152-156. MR 53:11420
  • 13. A. Ülger, Some results about the spectrum of commutative Banach algebras under the weak topology and applications, Monatsh. Math. 121 (1996), 353-379. MR 98a:46058
  • 14. W. Zelazko, Banach Algebras, Elsevier Publ. Co, 1973.MR 56:6389

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46J10, 46J15

Retrieve articles in all journals with MSC (2000): 46J10, 46J15


Additional Information

F. Behrouzi
Affiliation: Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Tehran 15618, Iran
Email: behrouzif@yahoo.com

H. Mahyar
Affiliation: Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Tehran 15618, Iran
Email: mahyar@saba.tmu.ac.ir

DOI: https://doi.org/10.1090/S0002-9939-04-07592-6
Keywords: Compact and weakly compact homomorphism, Gleason part, analytic structure
Received by editor(s): February 2, 2003
Received by editor(s) in revised form: December 18, 2003
Published electronically: October 18, 2004
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2004 American Mathematical Society