Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hilbert-Samuel coefficients and postulation numbers of graded components of certain local cohomology modules


Authors: M. Brodmann and F. Rohrer
Journal: Proc. Amer. Math. Soc. 133 (2005), 987-993
MSC (2000): Primary 13D45, 13E10
DOI: https://doi.org/10.1090/S0002-9939-04-07779-2
Published electronically: November 19, 2004
MathSciNet review: 2117198
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $R = \bigoplus _{n \geq 0} R_n$ be a Noetherian homogeneous ring with one-dimensional local base ring $(R_0, {\mathfrak m}_0)$. Let ${\mathfrak q}_0 \subseteq R_0$ be an ${\mathfrak m}_0$-primary ideal, let $M$ be a finitely generated graded $R$-module and let $i \in {\mathbb N}_0$. Let $H^i_{R_+}(M)$ denote the $i$-th local cohomology module of $M$ with respect to the irrelevant ideal $R_+:= \bigoplus _{n > 0} R_n$ of $R$. We show that the first Hilbert-Samuel coefficient $e_1 \big( {\mathfrak q}_0, H^i_{R_+}(M)_n \big) $ of the $n$-th graded component of $H^i_{R_+}(M)$ with respect to ${\mathfrak q}_0$ is antipolynomial of degree $< i$ in $n$. In addition, we prove that the postulation numbers of the components $H^i_{R_+} (M)_n$ with respect to ${\mathfrak q}_0$ have a common upper bound.


References [Enhancements On Off] (What's this?)

  • [B-F-L] M. BRODMANN, S. FUMASOLI and C.S. LIM: Low-codimensional associated primes of graded components of local cohomology modules, Journal of Algebra 275 (2004), 867-882. MR 2052643.
  • [B-F-T] M. BRODMANN, S. FUMASOLI and R. TAJAROD: Local cohomology over homogeneous rings with one-dimensional local base ring, Proceedings of the AMS 131, No 10 (2003), 2977-2985. MR 1993202 (2004f:13021)
  • [B-H] M. BRODMANN and M. HELLUS: Cohomological patterns of coherent sheaves over projective schemes, Journal of Pure and Applied Algebra 172 (2002), 165-182. MR 1906872 (2003f:13017)
  • [B-K-S] M. BRODMANN, M. KATZMAN and R.Y. SHARP: Associated primes of graded components of local cohomology modules, Transactions of the AMS 354, No 11 (2002), 4261-4283. MR 1926875 (2003h:13020)
  • [B-S] M. BRODMANN and R.Y. SHARP: Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press (1998). MR 1613627 (99h:13020)
  • [E] D. EISENBUD: Commutative algebra with a view towards algebraic geometry, Springer, New York (1996). MR 1322960 (97a:13001)
  • [K] M. KATZMAN: An example of an infinite set of associated primes of a local cohomology module, Journal of Algebra 252 (2002), 161-166. MR 1922391 (2003h:13021)
  • [Ki] D. KIRBY: Artinian modules and Hilbert polynomials, Quarterly Journal of Mathematics, Oxford (2) 24 (1973), 47-57. MR 0316446 (47:4993)
  • [L] C.S. LIM: Graded local cohomology modules and their associated primes, Communications in Algebra 32, No 2 (2004), 727-745.
  • [S] A.K. SINGH: $p$-torsion elements in local cohomology modules, Mathematics Research Letters 7 (2000), 165-176. MR 1764314 (2001g:13039)
  • [T] N.V. TRUNG: Reduction exponent and degree bound for the defining equations of graded rings, Proceedings of the AMS 101 (1987), 229 -236. MR 0902533 (89i:13031)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 13D45, 13E10

Retrieve articles in all journals with MSC (2000): 13D45, 13E10


Additional Information

M. Brodmann
Affiliation: Institute of Mathematics, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
Email: brodmann@math.unizh.ch

F. Rohrer
Affiliation: Institute of Mathematics, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
Email: fred@math.unizh.ch

DOI: https://doi.org/10.1090/S0002-9939-04-07779-2
Keywords: Local cohomology modules, graded components, Hilbert-Samuel polynomials
Received by editor(s): December 1, 2003
Published electronically: November 19, 2004
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society