HilbertSamuel coefficients and postulation numbers of graded components of certain local cohomology modules
Authors:
M. Brodmann and F. Rohrer
Journal:
Proc. Amer. Math. Soc. 133 (2005), 987993
MSC (2000):
Primary 13D45, 13E10
Published electronically:
November 19, 2004
MathSciNet review:
2117198
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a Noetherian homogeneous ring with onedimensional local base ring . Let be an primary ideal, let be a finitely generated graded module and let . Let denote the th local cohomology module of with respect to the irrelevant ideal of . We show that the first HilbertSamuel coefficient of the th graded component of with respect to is antipolynomial of degree in . In addition, we prove that the postulation numbers of the components with respect to have a common upper bound.
 [BFL]
M.
Brodmann, S.
Fumasoli, and C.
S. Lim, Lowcodimensional associated primes of graded components of
local cohomology modules, J. Algebra 275 (2004),
no. 2, 867–882. MR 2052643
(2005d:13028), http://dx.doi.org/10.1016/j.jalgebra.2003.12.003
 [BFT]
M.
Brodmann, S.
Fumasoli, and R.
Tajarod, Local cohomology over homogeneous
rings with onedimensional local base ring, Proc. Amer. Math. Soc. 131 (2003), no. 10, 2977–2985 (electronic). MR 1993202
(2004f:13021), http://dx.doi.org/10.1090/S0002993903070096
 [BH]
M.
Brodmann and M.
Hellus, Cohomological patterns of coherent sheaves over projective
schemes, J. Pure Appl. Algebra 172 (2002),
no. 23, 165–182. MR 1906872
(2003f:13017), http://dx.doi.org/10.1016/S00224049(01)00144X
 [BKS]
Markus
P. Brodmann, Mordechai
Katzman, and Rodney
Y. Sharp, Associated primes of graded components
of local cohomology modules, Trans. Amer. Math.
Soc. 354 (2002), no. 11, 4261–4283 (electronic). MR 1926875
(2003h:13020), http://dx.doi.org/10.1090/S0002994702029872
 [BS]
M.
P. Brodmann and R.
Y. Sharp, Local cohomology: an algebraic introduction with
geometric applications, Cambridge Studies in Advanced Mathematics,
vol. 60, Cambridge University Press, Cambridge, 1998. MR 1613627
(99h:13020)
 [E]
David
Eisenbud, Commutative algebra, Graduate Texts in Mathematics,
vol. 150, SpringerVerlag, New York, 1995. With a view toward
algebraic geometry. MR 1322960
(97a:13001)
 [K]
Mordechai
Katzman, An example of an infinite set of associated primes of a
local cohomology module, J. Algebra 252 (2002),
no. 1, 161–166. MR 1922391
(2003h:13021), http://dx.doi.org/10.1016/S00218693(02)000327
 [Ki]
D.
Kirby, Artinian modules and Hilbert polynomials, Quart. J.
Math. Oxford Ser. (2) 24 (1973), 47–57. MR 0316446
(47 #4993)
 [L]
C.S. LIM: Graded local cohomology modules and their associated primes, Communications in Algebra 32, No 2 (2004), 727745.
 [S]
Anurag
K. Singh, 𝑝torsion elements in local cohomology
modules, Math. Res. Lett. 7 (2000), no. 23,
165–176. MR 1764314
(2001g:13039), http://dx.doi.org/10.4310/MRL.2000.v7.n2.a3
 [T]
Ngô
Vi\cfudot{e}t Trung, Reduction exponent and degree bound
for the defining equations of graded rings, Proc. Amer. Math. Soc. 101 (1987), no. 2, 229–236. MR 902533
(89i:13031), http://dx.doi.org/10.1090/S00029939198709025331
 [BFL]
 M. BRODMANN, S. FUMASOLI and C.S. LIM: Lowcodimensional associated primes of graded components of local cohomology modules, Journal of Algebra 275 (2004), 867882. MR 2052643.
 [BFT]
 M. BRODMANN, S. FUMASOLI and R. TAJAROD: Local cohomology over homogeneous rings with onedimensional local base ring, Proceedings of the AMS 131, No 10 (2003), 29772985. MR 1993202 (2004f:13021)
 [BH]
 M. BRODMANN and M. HELLUS: Cohomological patterns of coherent sheaves over projective schemes, Journal of Pure and Applied Algebra 172 (2002), 165182. MR 1906872 (2003f:13017)
 [BKS]
 M. BRODMANN, M. KATZMAN and R.Y. SHARP: Associated primes of graded components of local cohomology modules, Transactions of the AMS 354, No 11 (2002), 42614283. MR 1926875 (2003h:13020)
 [BS]
 M. BRODMANN and R.Y. SHARP: Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press (1998). MR 1613627 (99h:13020)
 [E]
 D. EISENBUD: Commutative algebra with a view towards algebraic geometry, Springer, New York (1996). MR 1322960 (97a:13001)
 [K]
 M. KATZMAN: An example of an infinite set of associated primes of a local cohomology module, Journal of Algebra 252 (2002), 161166. MR 1922391 (2003h:13021)
 [Ki]
 D. KIRBY: Artinian modules and Hilbert polynomials, Quarterly Journal of Mathematics, Oxford (2) 24 (1973), 4757. MR 0316446 (47:4993)
 [L]
 C.S. LIM: Graded local cohomology modules and their associated primes, Communications in Algebra 32, No 2 (2004), 727745.
 [S]
 A.K. SINGH: torsion elements in local cohomology modules, Mathematics Research Letters 7 (2000), 165176. MR 1764314 (2001g:13039)
 [T]
 N.V. TRUNG: Reduction exponent and degree bound for the defining equations of graded rings, Proceedings of the AMS 101 (1987), 229 236. MR 0902533 (89i:13031)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
13D45,
13E10
Retrieve articles in all journals
with MSC (2000):
13D45,
13E10
Additional Information
M. Brodmann
Affiliation:
Institute of Mathematics, University of Zürich, Winterthurerstrasse 190, CH8057 Zürich, Switzerland
Email:
brodmann@math.unizh.ch
F. Rohrer
Affiliation:
Institute of Mathematics, University of Zürich, Winterthurerstrasse 190, CH8057 Zürich, Switzerland
Email:
fred@math.unizh.ch
DOI:
http://dx.doi.org/10.1090/S0002993904077792
PII:
S 00029939(04)077792
Keywords:
Local cohomology modules,
graded components,
HilbertSamuel polynomials
Received by editor(s):
December 1, 2003
Published electronically:
November 19, 2004
Communicated by:
Bernd Ulrich
Article copyright:
© Copyright 2004
American Mathematical Society
