Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

K-theory tools for local and asymptotic cyclic cohomology


Author: Vahid Shirbisheh
Journal: Proc. Amer. Math. Soc. 133 (2005), 1185-1195
MSC (2000): Primary 46L80; Secondary 46L65
DOI: https://doi.org/10.1090/S0002-9939-04-07807-4
Published electronically: November 1, 2004
MathSciNet review: 2117221
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A generalization of the Connes-Thom isomorphism is given for stable, homotopy invariant, and split exact functors on separable $C^*$-algebras. As examples of these functors, we concentrate on asymptotic and local cyclic cohomology, and the result is applied to improve some formulas in asymptotic and local cyclic cohomology of $C^*$-algebras. As another application, it is shown that these cyclic theories are rigid under Rieffel's deformation quantizations.


References [Enhancements On Off] (What's this?)

  • [A1] ABADIE, B. Vector bundles over quantum Heisenberg manifolds. Algebraic methods in operator theory. Birkhäuser Boston, Boston, MA, 307-315, 1994. MR 1284956 (95j:58006)
  • [A2] ABADIE, B. Generalized fixed-point algebras of certain actions on crossed products. Pacific. J. Math. 171 (1995), no.1, 1-21. MR 1362977 (96m:46121)
  • [AEE] ABADIE, B., EILERS, S., EXEL, R. Morita equivalence for crossed products by Hilbert $C^*$-bimodules. Transactions of the Amer. Math. Soc. 350 (1998), no.8, 3043-3054. MR 1467459 (98k:46109)
  • [B] BLACKADAR, B. $K$-theory for operator algebras. MSRI Publications, Springer-Verlag, New York, 1986. MR 0859867 (88g:46082)
  • [BGR] BROWN, L. G., GREEN, PH., RIEFFEL, M. A. Stable isomorphism and strong Morita equivalence of $C^*$-algebras. Pacific J. Math. 71 (1977), no. 2, 349-363. MR 0463928 (57:3866)
  • [C1] CUNTZ, J. Generalized homomorphisms between $C^*$-algebras and $KK$-theory. Dynamics and processes (Bielefeld, 1981), 31-45, Lecture Notes in Math. 1031, Springer, Berlin, 1983. MR 0733641 (85j:46126)
  • [C2] CUNTZ, J. $K$-theory and $C^*$-algebras. Algebraic $K$-theory, number theory, geometry and analysis (Bielefeld, 1982), 55-79, Lecture Notes in Math. 1046, Springer, Berlin, 1984. MR 0750677 (86d:46071)
  • [C3] CUNTZ, J. A new look at $KK$-theory. $K$-Theory 1 (1987), no.1, 31-51. MR 0899916 (89a:46142)
  • [E] EXEL, R. Circle actions on $C^*$-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence. J. Funct. Anal. 122 (1994), no.2, 361-401. MR 1276163 (95g:46122)
  • [FS] FACK, T., SKANDALIS, G. Connes' analogue of the Thom isomorphism for the Kasparov groups, Inventiones Math. 64 (1981), 7-14. MR 0621767 (82g:46113)
  • [H] HIGSON, N. A characterization of $KK$-theory, Pacific J. Math. 126 (1987), no. 2, 253-276. MR 0869779 (88a:46083)
  • [KhS] KHOSHKAM, M., SKANDALIS, G. Toeplitz algebras associated with endomorphisms and Pimsner-Voiculescu exact sequences. Pacific J. Math. 181 (1997), no.2, 315-331. MR 1486534 (98k:46088)
  • [M] MEYER, R. Comparisons between periodic, analytic, and local cyclic cohomology, math.KT/ 0205276.
  • [NT1] NEST, R., TSYGAN, B. Algebraic index theorem, Comm. Math. Phys.172 (1995), 223-262. MR 1350407 (96j:58163b)
  • [NT2] NEST, R., TSYGAN, B. Algebraic index theorem for families, Adv. Math. 113 (1995), 151-205. MR 1337107 (96j:58163a)
  • [P] PIMSNER, M. A class of $C^*$-algebras generalizing both Cuntz-Krieger algebras and crossed products by $Z$. Free probability theory (Waterloo, 1995), 189-212, Fields Inst. Commun. 12, Amer. Math. Soc. Providence, RI, 1997. MR 1426840 (97k:46069)
  • [PV] PIMSNER, M., VOICULESCU, D. Exact sequences for $K$-groups and Ext-groups of certain cross-product $C^*$-algebras. J. Operator Theory 4 (1980), no.1, 93-118. MR 0587369 (82c:46074)
  • [Pu1] PUSCHNIGG, M. Asymptotic cyclic cohomology. Springer Lecture Notes in Mathematics. 1642 (1996). MR 1482804 (99e:46098)
  • [Pu2] PUSCHNIGG, M. Cyclic homology theories for topological algebras. $K$-theory Preprint Archives 292.
  • [Pu3] PUSCHNIGG, M. Excision in cyclic homology theories. Invent. Math. 143 (2001), 249-323. MR 1835389 (2002e:16014)
  • [R1] RIEFFEL, M. A. Deformation quantization of Heisenberg manifolds. Comm. Math. Phys. 122 (1989), no. 4, 531-562. MR 1002830 (90e:46060)
  • [R2] RIEFFEL, M. A. Noncommutative tori--a case study of noncommutative differentiable manifolds. Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988), 191-211, Contemp. Math. Vol. 105, Amer. Math. Soc., Providence, RI, 1990. MR 1047281 (91d:58012)
  • [R3] RIEFFEL, M. A. Deformation quantization for actions of $\mathbb{R} ^d$. Mem. Amer. Math. Soc. 106 (1993), no. 506, x+93 pp. MR 1184061 (94d:46072)
  • [R4] RIEFFEL, M. A. $K$-groups of $C^*$-algebras deformed by actions of $\mathbb{R} ^d$. J. Funct. Anal. 116 (1993), no.1 199-214. MR 1237992 (94i:46088)
  • [Ro1] ROSENBERG, J. M. Rigidity of $K$-theory under deformation quantization. q-alg/ 9607021.
  • [Ro2] ROSENBERG, J. M. Behavior of $K$-theory under quantization. Operator algebras and quantum field theory (Rome, 1996), 404-415, Internat. Press, Cambridge, MA, 1997. MR 1491131 (99a:46129)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L80, 46L65

Retrieve articles in all journals with MSC (2000): 46L80, 46L65


Additional Information

Vahid Shirbisheh
Affiliation: Department of Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7
Email: vshirbis@uwo.ca

DOI: https://doi.org/10.1090/S0002-9939-04-07807-4
Keywords: \emph{KK}-theory, \emph{C*}-crossed product, local and asymptotic cyclic cohomology, excision, strong Morita equivalence, Rieffel's deformation quantizations
Received by editor(s): March 26, 2002
Received by editor(s) in revised form: December 10, 2003
Published electronically: November 1, 2004
Communicated by: David R. Larson
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society