Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Subelliptic Cordes estimates


Authors: András Domokos and Juan J. Manfredi
Journal: Proc. Amer. Math. Soc. 133 (2005), 1047-1056
MSC (2000): Primary 35H20, 35J70
Published electronically: November 19, 2004
MathSciNet review: 2117205
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove Cordes type estimates for subelliptic linear partial differential operators in non-divergence form with measurable coefficients in the Heisenberg group. As an application we establish interior horizontal $W^{2,2}$-regularity for p-harmonic functions in the Heisenberg group ${\mathbb H}^1$ for the range $\frac{\sqrt{17}-1}{2} \leq p < \frac{5+\sqrt{5}}{2}$.


References [Enhancements On Off] (What's this?)

  • 1. Luca Capogna, Donatella Danielli, and Nicola Garofalo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations 18 (1993), no. 9-10, 1765–1794. MR 1239930, 10.1080/03605309308820992
  • 2. H. O. Cordes, Zero order a priori estimates for solutions of elliptic differential equations, Proc. Sympos. Pure Math., Vol. IV, American Mathematical Society, Providence, R.I., 1961, pp. 157–166. MR 0146511
  • 3. A. Domokos, Differentiability of solutions for the non-degenerate $p$-Laplacian in the Heisenberg group, J. Differential Equations 204(2004), 439-470.
  • 4. A. Domokos and Juan J. Manfredi, $C^{1,\alpha}$-regularity for p-harmonic functions in the Heisenberg group for $p$ near $2$, to appear in The $p$-harmonic equation and recent advances in analysis, Contemporary Mathematics, editor Pietro Poggi-Corradini.
  • 5. David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
  • 6. Guozhen Lu, Polynomials, higher order Sobolev extension theorems and interpolation inequalities on weighted Folland-Stein spaces on stratified groups, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 3, 405–444. MR 1787096, 10.1007/PL00011552
  • 7. S. Marchi, 𝐶^{1,𝛼} local regularity for the solutions of the 𝑝-Laplacian on the Heisenberg group for 2≤𝑝<1+√5, Z. Anal. Anwendungen 20 (2001), no. 3, 617–636. MR 1863937, 10.4171/ZAA/1035
    S. Marchi, Erratum to: “𝐶^{1,𝛼} local regularity for the solutions of the 𝑝-Laplacian on the Heisenberg group for 2≤𝑝<1+√5” [Z. Anal. Anwendungen 20 (2001), no. 3, 617–636; MR1863937 (2002i:35037)], Z. Anal. Anwendungen 22 (2003), no. 2, 471–472. MR 2000279, 10.4171/ZAA/1157
  • 8. Silvana Marchi, 𝐶^{1,𝛼} local regularity for the solutions of the 𝑝-Laplacian on the Heisenberg group. The case 1+\frac1√5<𝑝≤2, Comment. Math. Univ. Carolin. 44 (2003), no. 1, 33–56. MR 2045844
  • 9. Duy-Minh Nhieu, Extension of Sobolev spaces on the Heisenberg group, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 12, 1559–1564 (English, with English and French summaries). MR 1367807
  • 10. Robert S. Strichartz, 𝐿^{𝑝} harmonic analysis and Radon transforms on the Heisenberg group, J. Funct. Anal. 96 (1991), no. 2, 350–406. MR 1101262, 10.1016/0022-1236(91)90066-E
  • 11. Giorgio Talenti, Sopra una classe di equazioni ellittiche a coefficienti misurabili, Ann. Mat. Pura Appl. (4) 69 (1965), 285–304 (Italian). MR 0201816

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35H20, 35J70

Retrieve articles in all journals with MSC (2000): 35H20, 35J70


Additional Information

András Domokos
Affiliation: Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, Pennsylvania 15260
Address at time of publication: Department of Mathematics and Statistics, California State University Sacramento, 6000 J Street, Sacramento, California 95819
Email: domokos@csus.edu

Juan J. Manfredi
Affiliation: Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, Pennsylvania 15260
Email: manfredi@pitt.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-04-07819-0
Keywords: Cordes conditions, subelliptic equations, p-Laplacian
Received by editor(s): August 13, 2003
Published electronically: November 19, 2004
Additional Notes: The authors were partially supported by NSF award DMS-0100107
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.