ERRATA TO “HECKE ALGEBRAS OF SEMIDIRECT PRODUCTS”

MARCELO LACA AND NADIA S. LARSEN

(Communicated by David R. Larson)

There is a mistake in Lemma 1.3 of our paper [3] that invalidates the proofs of [3, Lemma 1.10] and [3, Theorem 1.9]. We are grateful to Iain Raeburn, Jacqui Ramagge and Udo Baumgartner for communicating this to us and for suggesting that Lemma [11] below should be used in place of [3, Lemma 1.3] to fix the results. It is also necessary to normalize the products mentioned in part (i) of [3, Theorem 1.9]. Indeed, the correct linear basis for the Hecke algebra there is the set

\[\left\{ \frac{1}{R(n)} \mu_n^* [n] \mu_s : s, t \in \Sigma \text{ and } n \in N \right\}. \]

Lemma 1 (cf. [2, Corollary I. 4.5]). If \(\Gamma_0 x \Gamma_0 y \Gamma_0 = \Gamma_0 xy \Gamma_0 \), then \([x][y] = [xy]\). The following lemma should replace [3, Lemma 1.10].

Lemma 2. For \(s, t, \tau, \sigma \in \Sigma \) and \(n, m \in N \),

\[[t^{-1} n s] = [t^{-1} m \sigma] \iff \mu^*_t \frac{[n]}{R(n)} \mu_s = \mu^*_s \frac{[m]}{R(m)} \mu_\tau, \text{ in } H(\Gamma, \Gamma_0). \]

Proof. First notice that the partial products in \(\mu^*_t \frac{[n]}{R(n)} \mu_s \) are supported on single double cosets. To compute them we use Lemma [11] to get

\[[t^{-1}][m] = \frac{R(\tau^{-1}) R(m)}{R(\tau^{-1} m)} [t^{-1} m] \quad \text{and} \quad [t^{-1} m][\sigma] = \frac{R(\tau^{-1} m) R(\sigma)}{R(\tau^{-1} m \sigma)} [t^{-1} m \sigma], \]

and then combine the results to obtain the triple product

\[\mu^*_t \frac{[m]}{R(m)} \mu_\sigma = \frac{[t^{-1}][m][\sigma]}{[\tau^{-1}][m][\sigma]} = \frac{1}{R(\tau)^{1/2} R(m) R(\sigma)^{1/2}} \frac{R(\tau^{-1}) R(m)}{R(\tau^{-1} m)} \frac{R(\tau^{-1} m) R(\sigma)}{R(\tau^{-1} m \sigma)} [t^{-1} m \sigma]. \]

Since the triple product is supported on a single double coset, the implication \((\Leftarrow)\) follows. Next we simplify the coefficient, using \(R(\tau^{-1}) = L(\tau) = 1 \), to obtain

\[\mu^*_t \frac{[m]}{R(m)} \mu_\sigma = \left(\frac{R(\sigma)}{R(\tau)} \right)^{1/2} \frac{[t^{-1} m \sigma]}{R(\tau^{-1} m \sigma)}. \]

Received by the editors September 24, 2003.

2000 Mathematics Subject Classification. Primary 46L55.

©2004 American Mathematical Society

Reverts to public domain 28 years from publication

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Suppose now that $[\tau^{-1}m\sigma] = [t^{-1}ns]$. Taking quotients modulo N we see that $\tau^{-1} = t^{-1}s$ in $G = \Gamma/N$ so there exist elements γ and r in $S = \Sigma/N$ such that $\gamma\tau = rt$ and $\gamma\sigma = rs$ because S is directed. Since R is a homomorphism on Σ,
\[
\frac{R(\sigma)}{R(\tau)} = \frac{R(\gamma\sigma)}{R(\gamma\tau)} = \frac{R(rs)}{R(rt)} = \frac{R(s)}{R(t)},
\]
and the implication (\Rightarrow) now follows from (7). \qed

To correct the proof of [3, Theorem 1.9] we need a direct proof of the (rescaled) key identity
\[
(\star) \quad \mu_x\mu_x^m\mu_y^n = \mu_x\mu_x^m\mu_y^n. \tag{\star}
\]
Suppose $\mu_x^m = \mu_x^m\mu_y^n$ and multiplying on the left by μ_x and on the right by μ_y shows that this holds in $H(\Gamma, \Gamma_0)$ because of the relation (\star). Thus (\star) also holds for the universal (tilded) generators. Multiplying this now on the right by $\tilde{\mu}_y$ and simplifying, yields $\tilde{\mu}_x \tilde{\mu}_y = \tilde{\mu}_x \tilde{\mu}_y$, as desired. It follows that the canonical homomorphism $H(\Gamma, \Gamma_0) \to H(\Gamma, \Gamma_0)$ maps the spanning set $\{\frac{1}{\Gamma(\Gamma_0)}\tilde{\mu}_x \tilde{\mu}_y\}$ of the universal algebra of the relations one-to-one and onto the linear basis $\{\frac{1}{\Gamma(\Gamma_0)}\mu_x \mu_y\}$ of the Hecke algebra, hence is an isomorphism.

Note: A very interesting generalization of the results of [3] to group extensions has been obtained by Baumgartner et al. in [1] which implicitly provides, in the particular case of split extensions, a correction to the error they found in [3].

References

1. U. Baumgartner, J. Foster, J. Hicks, H. Lindsay, B. Maloney, I. Raeburn, J. Ramage, and S. Richardson, Hecke algebras of group extensions, preprint, University of Newcastle, Australia, (February 2004).
2. A. Krieg, Hecke Algebras, Mem. Amer. Math. Soc. 87 (1990), No. 435. MR1027069 (90m:16024)

Department of Mathematics and Statistics, University of Victoria, Victoria, Canada

E-mail address: laca@math.uvic.ca

Department of Mathematics, University of Oslo, P.O. Box 1053 Blindern, NO-0316 Oslo, Norway

E-mail address: nadiasl@math.uio.no