Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some characterizations of minimally thin sets in a cylinder and Beurling-Dahlberg-Sjögren type theorems


Authors: Ikuko Miyamoto and Minoru Yanagishita
Journal: Proc. Amer. Math. Soc. 133 (2005), 1391-1400
MSC (2000): Primary 31B05; Secondary 31B20
DOI: https://doi.org/10.1090/S0002-9939-04-07660-9
Published electronically: October 18, 2004
MathSciNet review: 2111964
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper shows that some characterizations of minimally thin sets connected with a domain having smooth boundary and a half-space in particular can also be given for a minimally thin set at infinity of a cylinder.


References [Enhancements On Off] (What's this?)

  • 1. H. Aikawa, Quasiadditivity of Riesz capacity, Math. Scand. 69(1991), 15-30. MR 1143471 (93d:31007)
  • 2. H. Aikawa and M. Essén, Potential Theory-Selected Topics, Lect. Notes in Math. 1633, Springer-Verlag, 1996. MR 1439503 (98f:31005)
  • 3. A. Ancona, On strong barriers and an inequality of Hardy for domains in $\mbox{\bf R}^{n}$, J. London Math. Soc. (2)34(1986), 274-290. MR 0856511 (87k:31004)
  • 4. V. S. Azarin, Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone, Mat. Sb. 66(108)(1965), 248-264; Amer. Math. Soc. Translations (2)80(1969), 119-138. MR 0176091 (31:366)
  • 5. A. Beurling, A minimum principle for positive harmonic functions, Ann. Acad. Sci. Fenn. Ser. AI. Math. 372(1965). MR 0188466 (32:5904)
  • 6. M. Brelot, On topologies and boundaries in potential theory, Lect. Notes in Math. 175, Springer-Verlag, 1971. MR 0281940 (43:7654)
  • 7. R. Courant and D. Hilbert, Methods of mathematical physics, 1st English edition Interscience, New York, 1954. MR 0065391 (16:426a)
  • 8. B. E. J. Dahlberg, A minimum principle for positive harmonic functions, Proc. London Math. Soc. (3)33(1976), 238-250. MR 0409847 (53:13599)
  • 9. J. I. Doob, Classical potential theory and its probabilistic counterpart, Springer-Verlag, 1984. MR 0731258 (85k:31001)
  • 10. M. Essén and H. L. Jackson, On the covering properties of certain exceptional sets in a half-space, Hiroshima Math. J. 10(1980), 233-262. MR 0577853 (81h:31007)
  • 11. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin 1977. MR 0473443 (57:13109)
  • 12. L. L. Helms, Introduction to potential theory, Wiley, New York, 1969. MR 0261018 (41:5638)
  • 13. L. Lewis, Uniformly fat sets, Trans. Amer. Math. Soc. 308(1988), 177-196. MR 0946438 (89e:31012)
  • 14. I. Miyamoto, Two criteria of Wiener type for minimally thin sets and rarefied sets in a cylinder, preprint.
  • 15. I. Miyamoto, M. Yanagishita and H. Yoshida, Beurling-Dahlberg-Sjögren type theorems for minimally thin sets in a cone, Canad. Math. Bull. 46 (2003), 252-264. MR 1981679 (2003m:31008)
  • 16. P. Sjögren, Une propriété des fonctions harmoniques positives, d'après Dahlberg, Séminaire de théorie du potentiel, Lecture Notes in Math. 563, Springer-Verlag, Berlin, 1976, 275-282. MR 0588344 (58:28556)
  • 17. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, 1970. MR 0290095 (44:7280)
  • 18. H. Yoshida, Nevanlinna norm of a subharmonic function on a cone or on a cylinder, Proc. London Math. Soc. (3)54(1987), 267-299. MR 0872808 (88a:31010)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 31B05, 31B20

Retrieve articles in all journals with MSC (2000): 31B05, 31B20


Additional Information

Ikuko Miyamoto
Affiliation: Department of Mathematics and Informatics, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
Email: miyamoto@math.s.chiba-u.ac.jp

Minoru Yanagishita
Affiliation: Department of Mathematics and Informatics, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
Email: myanagis@g.math.s.chiba-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-04-07660-9
Received by editor(s): February 28, 2003
Received by editor(s) in revised form: January 6, 2004
Published electronically: October 18, 2004
Dedicated: Dedicated to Professor Hidenobu Yoshida on his 60th birthday
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society