Semi-continuity of metric projections in ℓ_∞-direct sums

V. Indumathi

(Communicated by N. Tomczak-Jaegermann)

Abstract. Let Y be a proximinal subspace of finite codimension of c_0. We show that Y is proximinal in ℓ_∞ and the metric projection from ℓ_∞ onto Y is Hausdorff metric continuous. In particular, this implies that the metric projection from ℓ_∞ onto Y is both lower Hausdorff semi-continuous and upper Hausdorff semi-continuous.

1. Preliminaries

Let X be a real Banach space. For x in X and $r > 0$, we denote by $B_X(x, r)$ ($B_X[x, r]$), the open (closed) ball in X, with x as center and r as radius. The closed unit ball of X will be denoted by B_X and the unit sphere of X by S_X. Also, X^* denotes the dual of X. The collection of norm attaining functionals in X^* would be denoted by $\text{NA}(X)$. That is, a functional f in X^* is in $\text{NA}(X)$ if and only if there exists x in S_X such that $f(x) = \|f\|$.

For a subspace Y of X, let

$$Y^\perp = \{ f \in X^* : f(x) = 0 \quad \forall \ x \in Y \}.$$

If A is a closed subset of X and x is in X, $d(x, A) = \inf\{\|x - y\| : y \in A\}$. If $\mathbb{C}(Y)$ denotes the class of non-empty, bounded and closed subsets of Y, then the Hausdorff metric on $\mathbb{C}(Y)$ is given by

$$h(A, B) = \max_{x \in A} \{ \sup_{y \in B} d(x, B), \sup_{y \in B} d(y, A) \}$$

for A and B in $\mathbb{C}(Y)$.

Let $D \subseteq X$ and F be a map from D into a collection of non-empty subsets of X. If x is in D, the set-valued map F is lower semi-continuous at x if given $\epsilon > 0$ and z in $F(x)$, there exists $\delta > 0$ such that for all y in $D \cap B(x, \delta)$, there exists w in $F(y) \cap B(z, \epsilon)$. If the choice of δ is independent of the choice of $z \in F(x)$, or equivalently

$$F(y) \cap B(z, \epsilon) \neq \emptyset, \quad \forall \ z \in F(x) \text{ and } \forall \ y \in D \cap B(x, \delta),$$

then following [3], we say F is lower Hausdorff semi-continuous at x. The set-valued map F is upper Hausdorff semi-continuous at x in D if given $\epsilon > 0$, there exists
\(\delta > 0 \) such that \(F(y) \subseteq F(x) + \epsilon B_X \), for all \(y \) in \(D \cap B(x, \delta) \). The map \(F \) is said to be lower Hausdorff (upper Hausdorff) semi-continuous on the domain \(D \) if \(F \) is lower Hausdorff (upper Hausdorff) semi-continuous at each point \(x \) in \(D \).

If \(F(x) \) belongs to \(C(Y) \) for all \(x \) in \(D \subseteq X \) and \(x \) is in \(D \), we say \(F \) is Hausdorff metric continuous at \(x \) in \(D \) if the single-valued map \(F \) from \(D \) into the metric space \((C(Y), h) \) is continuous. We say \(F \) is Hausdorff metric continuous on \(D \) if \(F \) is Hausdorff metric continuous at all \(x \) in \(D \).

All subspaces are assumed to be closed. Let \(Y \) be a subspace of \(X \). For \(x \in X \), let

\[
P_Y(x) = \{ y \in Y : \| x - y \| = d(x, Y) \}.
\]

The subspace \(Y \) is said to be proximinal in \(X \), if for each \(x \in X \), the set \(P_Y(x) \) is non-empty. It is easily verified that if \(Y \) is a proximinal subspace of \(X \), then the set \(P_Y(x) \) is bounded, closed and convex. The set-valued map \(P_Y : X \to 2^Y \) is called the metric projection from \(X \) onto \(Y \). A usual compactness argument shows that all finite-dimensional subspaces are proximinal.

We also need the notion of strong proximinality as defined in \([7]\).

Definition 1.1. A proximinal subspace \(Y \) of a Banach space is called strongly proximinal if for each \(x \) in \(X \) and \(\epsilon > 0 \), there exists \(\delta > 0 \) such that

\[
s(x, \delta) = \sup \{ d(z, P_Y(x)) : z \in Y \text{ and } \| x - z \| < d(x, Y) + \delta \} < \epsilon.
\]

Remark 1.2. It is easily verified that if \(Y \) is a strongly proximinal subspace of a Banach space \(X \), then the metric projection \(P_Y \) is upper Hausdorff semi-continuous on \(X \). However, a proximinal subspace \(Y \), with \(P_Y \) upper Hausdorff semi-continuous, need not be strongly proximinal. For example, there exist proximinal hyperplanes that are not strongly proximinal (see Remark 1.2 of \([7]\)). But the metric projection onto any proximinal hyperplane is upper Hausdorff semi-continuous.

A subspace \(Y \) of a Banach space \(X \) is called an L-summand of \(X \) if there is a subspace \(Z \) of \(X \) such that

\[
X = Y \oplus Z
\]

and for any \(x \) in \(X \) with \(x = y + z \), where \(y \) is in \(Y \) and \(z \) is in \(Z \), we have

\[
\| x \| = \| y \| + \| z \|.
\]

A subspace \(E \) of a Banach space \(X \) is said to be an M-ideal of \(X \) if \(E^\perp \) is an L-summand of the dual space \(X^* \). A Banach space that is an M-ideal in its second dual is called an M-embedded space.

A finite-dimensional normed linear space \(X \) is called polyhedral if \(B_X \) has only a finite number of extreme points. A Banach space \(X \) is called polyhedral if every finite-dimensional subspace of \(X \) is polyhedral. A well-known example of an infinite-dimensional polyhedral space is the sequence space \(c_0 \).

2. **List of Known Results Needed**

We require a few known results about approximative properties of M-ideals and finite-dimensional polyhedral spaces. We quote them below with the appropriate references. All the results on M-ideals, which we list below, can be found in \([9]\). The following proposition couples Proposition 1.1 and Proposition 1.8 of Chapter II in \([9]\).
Proposition 2.1. Let Y be an M-ideal of a Banach space X. Then Y is proximinal in X and the metric projection P_Y from X onto Y is Hausdorff metric continuous on X.

Proposition 2.2 (See Example 1.4 of Chapter III of [2]). The sequence space c_0 is an M-ideal in its second dual space ℓ_∞ or equivalently, c_0 is an M-embedded space.

Remark 2.3. M-ideals are strongly proximinal. In fact, they have a stronger proximinality property. M-ideals are known to have the 3-ball property (Theorem I.2.2, [2]). It was shown in [8] and [10] that if a subspace Y has the 3-ball property in X, then Y is L-proximinal. That is, for each x in X, we have

$$\|x\| = d(x, Y) + d(0, P_Y(x)).$$

Thus if Y is an M-ideal in X, then Y is L-proximinal. It is easily verified that L-proximinality implies strong proximinality.

We now move on to a few facts about finite-dimensional spaces. We first observe that the metric projection, onto even one-dimensional subspaces, need not be lower semi-continuous [2]. However, the following result of A. L. Brown, from [1], has an affirmative assertion in the polyhedral case.

Proposition 2.4. Let X be a finite-dimensional polyhedral space and Y be a subspace of X. Then the metric projection P_Y from X onto Y is lower semi-continuous on X.

We also need some standard facts about finite-dimensional subspaces, which can be derived using the usual compactness arguments. We prove one below.

Fact 2.5. Let Y be a finite-dimensional subspace of a Banach space X, and assume that the metric projection P_Y is lower semi-continuous at some x in X. Then P_Y is lower Hausdorff semi-continuous at x.

Proof. The set $P_Y(x)$ is compact since it is closed and bounded. Let $\epsilon > 0$ be given. Using the lower semi-continuity of P_Y at x, select for each z in $P_Y(x)$, a positive number δ_z such that for every y in $B_X(x, \delta_z)$, the set $P_Y(y)$ intersects the open ball $B_X(z, \epsilon/2)$. Select a finite subcover, say, $\{B_X(z_i, \epsilon/2) \cap P_Y(x) : 1 \leq i \leq k\}$, of the open cover $\{B_X(z, \epsilon/2) \cap P_Y(x) : z \in P_Y(x)\}$ of $P_Y(x)$. Set $\delta = \min\{\delta_z : 1 \leq i \leq k\}$. Choose any z in $P_Y(x)$ and i such that z is in $B_X(z_i, \epsilon/2)$. Now for any y in $B_X(x, \delta)$, we have $P_Y(y) \cap B_X(z, \epsilon/2)$ is non-empty and so $P_Y(y) \cap B_X(z, \epsilon)$ is non-empty.

An easy compactness argument again proves the following statement.

Fact 2.6. Any finite-dimensional subspace of a Banach space is strongly proximinal.

The fact below now follows from Remark 1.2.

Fact 2.7. If Y is a finite-dimensional subspace of a Banach space X, then the metric projection P_Y is upper Hausdorff semi-continuous on X.

Finally, we make an easy observation connecting the three semi-continuity concepts we mentioned earlier.

Remark 2.8. Let X and Y be Banach spaces, and let F be a set-valued map from X into Y with $F(x)$ in $C(Y)$ for all x in X. Then F is Hausdorff metric continuous at x in X if and only if F is both lower Hausdorff semi-continuous and upper Hausdorff semi-continuous at x.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
This remark follows from the fact that if E and G are in $C(Y)$, then

$$h(E, G) < \epsilon \iff G \subseteq E + \epsilon B_Y \text{ and } G \cap B_Y(z, \epsilon) \neq \emptyset \forall z \in E.$$

The fact below now follows from the above observations and results of this section.

Fact 2.9. Let X be a finite-dimensional polyhedral space and Y be a subspace of X or X be a Banach space and Y be an M-ideal in X. In either case, Y is strongly proximinal in X and the metric projection P_Y from X onto Y is Hausdorff metric continuous.

3. **Semi-continuity in direct sum spaces**

In this section, we consider the ℓ_∞- direct sum, $X = X_1 \oplus X_2$, of two Banach spaces X_1 and X_2. If Y_1 and Y_2 are subspaces of X_1 and X_2 respectively, we set $Y = Y_1 \oplus Y_2$. For any x in X, we denote by x_i the unique elements of X_i, for $i \in \{1, 2\}$, satisfying $x = x_1 + x_2$. Clearly,

$$\|x\| = \max\{|\|x_1\|, \|x_2\|\}.$$

We set

$$d_i(x) = d(x, Y_i), \text{ for } i \in \{1, 2\}.$$

We note that

$$d(x, Y) = \max\{d_1(x), d_2(x)\}$$

and if z is in X, then

$$|d_i(x) - d_i(z)| \leq \|x_i - z_i\| \text{ for } i \in \{1, 2\}.$$

The following remark, with X and Y as above, is easy to verify.

Remark 3.1. Let Y_1 and Y_2 be proximinal subspaces of X_1 and X_2 respectively. Then Y is proximinal in X and

$$P_Y(x) = \begin{cases}
P_{Y_1}(x_1) + P_{Y_2}(x_2) & \text{if } d_1(x) = d_2(x), \\
B_{X_1}[x_1, d_2(x)] \cap Y_1 + P_{Y_2}(x_2) & \text{if } d_1(x) < d_2(x), \\
P_{Y_1}(x_1) + B_{X_2}[x_2, d_1(x)] \cap Y_2 & \text{if } d_1(x) > d_2(x).
\end{cases}$$

Note that in all the above three cases, we have

$$P_Y(x) \supseteq P_{Y_1}(x_1) + P_{Y_2}(x_2).$$

We need the following fact in the sequel.

Fact 3.2. Let E be a Banach space, F be a proximinal subspace of E and x be in $E \setminus F$. Let $\alpha > d(x, F) = d_x$. Then given $\epsilon > 0$, there exists $\delta > 0$ such that for any y in $B_E(x, \delta)$ and β satisfying $|\beta - \alpha| < \delta$, we have

$$h(B_E[x, \alpha] \cap F, B_E[y, \beta] \cap F) \leq \epsilon.$$

Proof. Let $2\gamma = \alpha - d_x$, $K = \alpha + d_x + 2$ and $\delta = \min\{1, \gamma/2, \gamma \epsilon/(2K)\}$. Let y be in $B_E(x, \delta)$. If $d_y = d(y, F)$ and β is a scalar such that $|\alpha - \beta| < \delta$, then it is easily verified, using (1), that

$$|d_x - d_y| < \delta \text{ and } \beta - d_y > \gamma.$$
Select any t in $B_E[x, \alpha] \cap F$. We will construct an element v in $B_E[y, \beta] \cap F$ satisfying $\|t - v\| < \epsilon$. We have
\[
\|y - t\| \leq \|y - x\| + \|x - t\| \leq \delta + \alpha \leq \beta + 2\delta.
\]
Now select any w in $P_F(y)$, and let
\[
v = \lambda t + (1 - \lambda)w, \text{ where } \lambda = \frac{\beta - d_y}{\beta - d_y + 2\delta}.
\]
Then v is in F and
\[
\|y - v\| \leq \lambda \|t - y\| + (1 - \lambda)d_y \\
\leq \lambda (\beta + 2\delta) + (1 - \lambda)d_y \\
= \lambda (\beta - d_y + 2\delta) + d_y = \beta.
\]
Now
\[
\|t - v\| = (1 - \lambda)\|t - w\| = \frac{2\delta}{\beta - d_y + 2\delta}\|t - w\| \\
< \frac{2\delta}{\gamma} (\|t - x\| + \|x - y\| + \|y - w\|) \\
\leq \frac{2\delta}{\gamma} (\alpha + \delta + d_y) \\
\leq \frac{2\delta}{\gamma} (\alpha + d_x + 2\delta) \\
\leq \frac{2\delta}{\gamma} K < \epsilon.
\]
Similarly, for any s in $B_E[y, \beta] \cap F$, we can get v' in $B_E[x, \alpha] \cap F$ satisfying $\|s - v'\| < \epsilon$, and this completes the proof of the fact.

Now we can prove the main result of this section.

Theorem 3.3. Let Y_i be a proximinal subspace of the normed linear space X_i for $i \in \{1, 2\}$, and let $Y = Y_1 \oplus_\infty Y_2$. If P_{Y_i} is lower Hausdorff semi-continuous on X_i for $i \in \{1, 2\}$, then P_Y is lower Hausdorff semi-continuous on $X = X_1 \oplus_\infty X_2$.

Proof. By Remark 3.1, Y is proximinal in X. Fix x in X and let $\epsilon > 0$ be given. Using the lower Hausdorff semi-continuity of the maps P_{Y_i} at x_i, we can get $\delta > 0$ such that
\[
(2) \quad z \in X, \ \|x - z\| < \delta \Rightarrow B_{X_i}(p_i, \epsilon) \cap P_{Y_i}(z_i) \neq \emptyset, \quad \text{for } i \in \{1, 2\}.
\]

Case 1. $d_1(x) = d_2(x)$.

In this case, we have $P_Y(x) = P_{Y_1}(x_1) \oplus_\infty P_{Y_2}(x_2)$. Select any $p_i \in P_{Y_i}(x_i)$ for $i \in \{1, 2\}$ and z in X with $\|x - z\| < \delta$. Using (2), we can pick r_i from $B_{X_i}(p_i, \epsilon) \cap P_{Y_i}(z_i)$ for $i \in \{1, 2\}$. By Remark 3.1, $r_1 + r_2$ is in $P_Y(z)$. Since $\|(p_1 + p_2) - (r_1 + r_2)\| < \epsilon$, it follows that P_Y is lower Hausdorff semi-continuous at x.

Case 2. $d_1(x) \neq d_2(x)$.

We discuss only the case $d_1(x) < d_2(x)$, the proof for the other case being similar. Let $2\delta = d_2(x) - d_1(x)$. Replacing x by x_1 and a by $d_2(x)$ in Fact 3.2, we can get $\delta > 0$ such that if $\|x - z\| < \delta$, then

$$d_2(z) - d_1(z) > \gamma$$

and

$$h(B_{X_1}[x_1, d_2(x)] \cap Y_1, B_{X_1}[z_1, d_2(z)] \cap Y_1) < \epsilon.$$

Without loss of generality, we assume that δ is so chosen that (2) is also satisfied.

We have, by Remark 3.1,

$$P_Y(w) = B_{X_1}[w_1, d_2(w)] \cap Y_1 + P_{Y_1}(w_2)$$

for all w in X with $\|x - w\| < \delta$. Choose any z in X with $\|x - z\| < \delta$. If t is in $B_{X_1}[x_1, d_2(x)] \cap Y_1$ and s in $P_{Y_1}(x_2)$, using the above inequality and (2), we select r in $B_{X_1}[z_1, d_2(z)] \cap Y_1$ and p in $P_{Y_1}(z_2)$ satisfying $\|t - r\| < \epsilon$ and $\|s - p\| < \epsilon$. Clearly $r + p$ is in $P_Y(z)$, and this completes the proof for this case.

We now prove a similar result for upper Hausdorff semi-continuity.

Theorem 3.4. Let X_i be a Banach space, Y_i a strongly proximinal subspace of X_i, for $i \in \{1, 2\}$. If $X = X_1 \oplus \infty X_2$ and $Y = Y_1 \oplus \infty Y_2$, then the metric projection P_Y, from X onto Y, is upper Hausdorff semi-continuous.

Proof. By Remark 3.1, Y is proximinal in X, and by Remark 1.2, the metric projection from X_i onto Y_i is upper Hausdorff semi-continuous, for $i \in \{1, 2\}$. Fix x in X and let $\epsilon > 0$ be given. Then there exists $\delta > 0$ such that

$$\|x - z\| < \delta \Rightarrow P_{Y_i}(z_i) \subseteq P_{Y_i}(x_i) + \epsilon B_{X_i},$$

for $i \in \{1, 2\}$.

Case 1. $d_1(x) = d_2(x)$.

In this case, we have $P_Y(x) = P_{Y_1}(x_1) \oplus \infty P_{Y_2}(x_2)$. Since Y_i is strongly proximinal in X_i, we can select $\eta > 0$ such that

$$s(x_i, \eta) < \epsilon \quad \text{for} \quad i \in \{1, 2\},$$

where $s(x_i, \eta)$ is given by Definition 1.1. We now choose $0 < \delta < \eta/4$ so that (3) holds and consider any z with $\|x - z\| < \delta$. If $d_1(z) = d_2(z)$, then $P_Y(z) = P_{Y_1}(z_1) + P_{Y_2}(z_2)$ and clearly by (3),

$$P_Y(z) \subseteq P_Y(x) + \epsilon B_X$$

in this case.

Now assume that $d_1(z) < d_2(z)$. Since

$$|d_1(x) - d_1(z)| \leq \|x - z\| < \eta/4, \quad \text{for} \quad i \in \{1, 2\},$$

we have

$$|d_2(z) - d_1(x)| \leq |d_2(z) - d_2(x)| + |d_2(x) - d_1(x)| = |d_2(z) - d_2(x)| < \eta/4. \quad \text{(5)}$$

Now, by Remark 3.1, $P_Y(z) = B_{X_1}[z_1, d_2(z)] \cap Y_1 + P_{Y_2}(z_2)$. Select any t in $B_{X_1}[z_1, d_2(z)] \cap Y_1$. Then, using (5), we have

$$\|t - x_1\| \leq \|t - z_1\| + \|z_1 - x_1\| \leq d_2(z) + \eta/4 \leq d_1(x) + \eta/2.$$

By (4), $s(x_1, \eta) < \epsilon$ and so we have $d(t, P_{Y_1}(x_1)) < \epsilon$. Thus there exists r in $P_{Y_1}(x_1)$ satisfying $\|t - r\| < \epsilon$ and

$$B_{X_1}[z_1, d_2(z)] \cap Y_1 \subseteq P_{Y_1}(x_1) + \epsilon B_{X_1}.$$
then the annihilator and is zero for all n from $[4]$

Since, by (3),

$$P_{Y_2}(z_2) \subseteq P_{Y_2}(x_2) + \epsilon B_{X_2},$$

we conclude that

$$P_Y(z) \subseteq P_Y(x) + \epsilon B_X.$$

If $d_2(z) < d_1(z)$, we argue just as above to conclude that P_Y is upper Hausdorff semi-continuous.

Case 2. $d_1(x) \neq d_2(x)$.

We discuss only the case $d_1(x) < d_2(x)$, the proof for the other case being similar. Let $2\gamma = d_2(x) - d_1(x)$. Replacing x by x_1 and α by $d_2(x)$ in Fact 3.2, we can get $\delta > 0$ such that if $\|x - z\| < \delta$, then

$$d_2(z) - d_1(z) > \gamma$$

and

$$h(B_{X_1}[z_1, d_2(x)] \cap Y_1, B_{X_1}[z_1, d_2(z)] \cap Y_1) < \epsilon.$$

Without loss of generality, we assume that δ is so chosen that (3) is also satisfied.

We have

$$P_Y(w) = B_{X_1}[w_1, d_2(w)] \cap Y_1 + P_{Y_2}(w_2)$$

for all w in X with $\|x - w\| < \delta$. Select any z in X with $\|x - z\| < \delta$. If t is in $B_{X_1}[z_1, d_2(z)] \cap Y_1$ and s in $P_{Y_2}(z_2)$, using the above inequality and (3), we select r in $B_{X_1}[x_1, d_2(x)] \cap Y_1$ and p in $P_{Y_2}(x_2)$ satisfying $\|t - r\| < \epsilon$ and $\|s - p\| < \epsilon$. Clearly $r + p$ is in $P_Y(x)$ and $P_Y(z) \subseteq P_Y(x) + \epsilon B_X$. \square

Remark 3.5. Let X be an ℓ_∞-direct sum of two non-zero Banach spaces X_1 and X_2 and Y_i be a proximinal, proper subspace of X_i, for $i \in \{1, 2\}$. It was recently shown in [4] that if P_{Y_i} is upper Hausdorff semi-continuous on X, where $Y = Y_1 \oplus_\infty Y_2$, then Y_i must be strongly proximinal in X_i, for $i \in \{1, 2\}$. This clearly implies that Theorem 3.4 does not hold if, for any one of the two values of i, strong proximinality of Y_i is replaced by the strictly weaker assumption that Y_i is proximinal and P_{Y_i} is upper Hausdorff semi-continuous.

The following theorem now follows from Remark 2.8 and Theorems 3.3 and 3.4.

Theorem 3.6. Let X_i be a Banach space, Y_i a strongly proximinal subspace of X_i with the metric projection from X_i onto Y_i Hausdorff metric continuous, for $i \in \{1, 2\}$. If $X = X_1 \oplus_\infty X_2$ and $Y = Y_1 \oplus_\infty Y_2$, then the metric projection P_Y from X onto Y is Hausdorff metric continuous.

4. **Proximinal subspaces of finite codimension of c_0**

If Y is a proximinal subspace of finite codimension in a normed linear space X, then the annihilator Y^\perp of Y is contained in $NA(X)$, the class of norm attaining functionals on X (see [5] and [6]). Let Y' be a proximinal subspace of finite codimension in c_0. Since $NA(c_0)$ is the set of finite sequences in ℓ_1 and Y^\perp is finite dimensional, there exists a positive integer k such that for any $f = (f_n)$ in Y^\perp, f_n is zero for all $n \geq k$. In the rest of this section, the subspace Y and positive integer k are fixed as above.
Let \(\{ e_n : n \geq 1 \} \) denote the natural basis of \(c_0 \). For any sequence \(x = (x_n) \) of scalars, we set \(\hat{x} = \sum_{n=1}^{k} x_n e_n \). Also, we set
\[
X_1 = \text{span} \{ e_1, e_2, \cdots, e_k \},
\]
\[
X_2 = \{ (x_n) \in \ell_{\infty} : x_n = 0 \text{ for } 1 \leq n \leq k \},
\]
\[
Y_1 = \{ \hat{x} : x \in Y \}
\]
and finally
\[
Y_2 = \{ (x_n) \in c_0 : x_n = 0 \text{ for } 1 \leq n \leq k \}.
\]
Then clearly \(Y_i \) is a subspace of \(X_i \) for \(i = 1, 2 \) and
\[
X = X_1 \oplus_{\infty} X_2.
\]
Also, note that if \(x \) is in \(c_0 \), then
\[
x \in Y \iff \hat{x} \in Y \iff \hat{x} \in Y_1.
\]
It is now clear that \(Y = Y_1 \oplus_{\infty} Y_2 \).

Now, following the same proof for \(c_0 \) an M-ideal in \(\ell_{\infty} \), we get \(Y_2 \) to be an M-ideal in \(X_2 \). Since \(X_1 \) is a finite-dimensional subspace of \(c_0 \), it is a polyhedral space. By Fact 2.9, \(Y_i \) is a strongly proximinal subspace of \(X_i \) with the metric projection \(P_{Y_i} \) from \(X_i \) onto \(Y_i \) Hausdorff metric continuous for \(i \in \{1, 2\} \). It is now clear that the main theorem of this article, given below, follows immediately from Theorem 3.6.

Theorem 4.1. Let \(Y \) be a proximinal subspace of finite codimension in \(c_0 \). Then \(Y \) is proximinal in \(\ell_{\infty} \) and the metric projection from \(\ell_{\infty} \) onto \(Y \) is Hausdorff metric continuous.

Remark 4.2. Let \(Y \) be a subspace of codimension \(k \) in \(c_0 \), and assume \(Y^\perp \) is the span of a linearly independent set \(\{ f_1, f_2, \cdots, f_k \} \). Then it follows from Example 1.4 (a) of \([9]\) that \(Y \) is an M-ideal in \(\ell_{\infty} \) if and only if \(Y \) is an M-ideal in \(c_0 \) if and only if \(f_i \) belongs to \(\{ e_n : n \geq 1 \} \) for each \(i, 1 \leq i \leq k \). We recall, from \([9]\), that \(Y \) is proximinal in \(c_0 \) (and hence in \(\ell_{\infty} \)) if and only if \(Y^\perp \) is contained in \(NA(c_0) \) or equivalently, every element of \(Y^\perp \) is a sequence of \(\ell_1 \) with only a finite number of nonzero entries. Thus, there are plenty of proximinal subspaces of finite codimension of \(c_0 \) that are not M-ideals in \(\ell_{\infty} \) and for these, Theorem 4.1 cannot be derived from Proposition 2.1.

Acknowledgement

The author would like to express her thanks to Prof. Bor-Luh Lin and Prof. Vladimir Fonf for questions that led to this paper.

References

10. Rafael Paya and David Yost, The two ball property. Transitivity and Examples, Mathematika, 35, 1988, 190-197. MR0986628 (90a:46036)

Department of Mathematics, Pondicherry University, Kalapet, Pondicherry-605014, India

E-mail address: pdy.indumathi@sancharnet.in