Some remarks on an existence problem for degenerate elliptic systems

Authors:
Olli Martio, Vladimir Miklyukov and Matti Vuorinen

Journal:
Proc. Amer. Math. Soc. **133** (2005), 1451-1458

MSC (2000):
Primary 30C62; Secondary 35J70

DOI:
https://doi.org/10.1090/S0002-9939-04-07695-6

Published electronically:
November 22, 2004

MathSciNet review:
2111944

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The system which yields Beltrami's system if , is considered. Under a condition for the coefficients a non-existence theorem is proved.

**1.**B. V. Boyarskiĭ,*Generalized solutions of a system of differential equations of first order and of elliptic type with discontinuous coefficients*, Mat. Sb. N.S.**43(85)**(1957), 451–503 (Russian). MR**0106324****2.**Melkana A. Brakalova and James A. Jenkins,*On solutions of the Beltrami equation*, J. Anal. Math.**76**(1998), 67–92. MR**1676936**, https://doi.org/10.1007/BF02786930**3.**YU. BURAGO AND V. A. ZALGALLER: Geometric inequalities, Leningrad, "Nauka", 1980 (in Russian). MR**0602952 (82d:52009)****4.**E. A. Ščerbakov,*Homeomorphic solutions of degenerate elliptic systems*, Mathematical physics, No. 8 (Russian), Naukova Dumka, Kiev, 1970, pp. 187–190 (Russian). MR**0293239****5.**G. DAVID: Solutions de l'équation de Beltrami avec , Ann. Acad. Sci. Fenn. Ser. A I Math.**13**, 25-70, 1988. MR**0975566 (90d:30058)****6.**A. Džuraev,*A system of Beltrami equations which are degenerate on a curve*, Dokl. Akad. Nauk SSSR**185**(1969), 984–986 (Russian). MR**0241668****7.**F. R. Gantmacher,*The theory of matrices. Vols. 1, 2*, Translated by K. A. Hirsch, Chelsea Publishing Co., New York, 1959. MR**0107649****8.**V. GUTLYANSKII, O. MARTIO, T. SUGAWA AND M. VUORINEN: On the degenerate Beltrami equation, Reports of the Dept. of Math., Univ. of Helsinki, Preprint 282, 2001, 1-32, Trans. Amer. Math. Soc. (to appear).**9.**Juha Heinonen, Tero Kilpeläinen, and Olli Martio,*Nonlinear potential theory of degenerate elliptic equations*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR**1207810****10.**O. MARTIO AND V.M. MIKLYUKOV: On existence and uniqueness of degenerate Beltrami equation, Reports of the Dept. of Math., Univ. of Helsinki, Preprint 347, 2003, 1-12.**11.**O. MARTIO, V.M. MIKLYUKOV AND M. VUORINEN: Functions monotone close to boundary, Reports of the Dept. of Math., Univ. of Helsinki, Preprint 330, March 2002, 1-20, Tohoku Math. J. (to appear).**12.**A.P. MIHAILOV: A problem for a mapping by solutions of elliptic system degenerating on boundary (in Russian), Sibirsk. Mat. Zh.**24**, No. 3, 119-127, 1983. MR**0704163 (84m:30075)****13.**I. S. Ovčinnikov,*The existence of mappings on the plane for degenerate first order elliptic systems*, Dokl. Akad. Nauk SSSR**191**(1970), 526–529 (Russian). MR**0259355****14.**Uri Srebro and Eduard Yakubov,*Branched folded maps and alternating Beltrami equations*, J. Anal. Math.**70**(1996), 65–90. MR**1444258**, https://doi.org/10.1007/BF02820441**15.**William P. Ziemer,*Weakly differentiable functions*, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR**1014685**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
30C62,
35J70

Retrieve articles in all journals with MSC (2000): 30C62, 35J70

Additional Information

**Olli Martio**

Affiliation:
Department of Mathematics and Statistics, P.O. Box 68, FIN-00014, University of Helsinki, Finland

Email:
martio@cc.helsinki.fi

**Vladimir Miklyukov**

Affiliation:
Department of Mathematics, Volgograd State University, 2 Prodolnaya, 30, Volgograd, 400062, Russia

Email:
miklyuk@mail.ru

**Matti Vuorinen**

Affiliation:
Department of Mathematics, FIN-20014, University of Turku, Finland

Email:
vuorinen@csc.fi

DOI:
https://doi.org/10.1090/S0002-9939-04-07695-6

Received by editor(s):
June 1, 2003

Received by editor(s) in revised form:
January 22, 2004

Published electronically:
November 22, 2004

Communicated by:
Richard A. Wentworth

Article copyright:
© Copyright 2004
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.