Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Essential numerical range of elementary operators


Author: M. Barraa
Journal: Proc. Amer. Math. Soc. 133 (2005), 1723-1726
MSC (2000): Primary 47B47; Secondary 47A12
DOI: https://doi.org/10.1090/S0002-9939-04-07672-5
Published electronically: December 20, 2004
MathSciNet review: 2120257
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $A= (A_{1},...,A_{p})$ and $B=(B_{1},...,B_{p})$ denote two $p$-tuples of operators with $A_{i}\in \mathcal L(H)$ and $B_{i}\in \mathcal L(K).$ Let $R_{2,A,B}$ denote the elementary operators defined on the Hilbert-Schmidt class $\mathcal C^{2}(H,K)$ by $ R_{2,A,B}(X)=A_{1}XB_{1}+...+A_{p}XB_{p}.$We show that

\begin{displaymath}co\left[(W_{e}(A)\circ W(B))\cup (W(A)\circ W_{e}(B))\right]\subseteq V_{e}(R_{2,A,B}).\end{displaymath}

Here $V_{e}(.)$ is the essential numerical range, $ W(.)$ is the joint numerical range and $W_{e}(.)$ is the joint essential numerical range.


References [Enhancements On Off] (What's this?)

  • 1. F.F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and Elements of Normed Algebras, London Math. Soc. Lecture Note Series 2, Cambridge, 1971. MR 0288583 (44:5779)
  • 2. F.F Bonsall and J. Duncan, Numerical ranges, vol II, Cambridge University Press (1973). MR 0442682 (56:1063)
  • 3. R. Curto, The spectra of elementary operators, Indiana Univ. Math.J., 32(1983), 193-197. MR 0690184 (84e:47005)
  • 4. L.A. Fialkow, A note on norm ideals and the operator $X\rightarrow AX-XB$, Israel J. Math., 32(1979), 331-348. MR 0571087 (81g:47046)
  • 5. L. A. Fialkow, Spectral properties of elementary operators, Acta Sci. Math., 46(1983), 269-282. MR 0739043 (85h:47003)
  • 6. C. K. Fong, Normal operators on Banach space, Glasgow Math. J. 20(1979), 163-168. MR 0536389 (80e:47020)
  • 7. B. Magajna, On the essential numerical range of a generalized derivation, Proc. Amer. Math. Soc., 99(1987), 86-92. MR 0866435 (88e:47065)
  • 8. R. Schatten, Norm ideals of completely continuous operators, Ergebnisse der Math. und ihrer Grenzgebiete, 27, 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York,1970. MR 0257800 (41:2449)
  • 9. J. Stampfli, P. Fillmore and J. Williams, On the essential numerical range, the essential spectrum and a problem of Halmos, Acta Sci. Math., 33(1973), 172-192. MR 0322534 (48:896)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47B47, 47A12

Retrieve articles in all journals with MSC (2000): 47B47, 47A12


Additional Information

M. Barraa
Affiliation: Département de Mathématiques, Faculté des Sciences Semlalia, Marrakech, Maroc
Email: barraa@ucam.ac.ma

DOI: https://doi.org/10.1090/S0002-9939-04-07672-5
Keywords: Elementary operators, essential numerical range, Hilbert-Schmidt class
Received by editor(s): November 14, 2003
Received by editor(s) in revised form: February 13, 2004
Published electronically: December 20, 2004
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society