SURFACES, SUBMANIFOLDS, AND ALIGNED FOX REIMBEDDING IN NON-HAKEH 3-MANIFOLDS

MARTIN SCHARLEMMANN AND ABIGAIL THOMPSON

(Communicated by Ronald A. Fintushel)

Abstract. Understanding non-Haken 3-manifolds is central to many current endeavors in 3-manifold topology. We describe some results for closed orientable surfaces in non-Haken manifolds, and extend Fox’s theorem for submanifolds of the 3-sphere to submanifolds of general non-Haken manifolds. In the case where the submanifold has connected boundary, we show also that the ∂-connected sum decomposition of the submanifold can be aligned with such a structure on the submanifold’s complement.

1. Introduction

A closed orientable irreducible 3-manifold \(N \) is called Haken if it contains a closed orientable incompressible surface; otherwise \(N \) is non-Haken. In Section 2 we describe some results for surfaces in non-Haken manifolds. Generalizing a theorem of Fox ([F]), we show in Section 3 that a 3-dimensional submanifold of a non-Haken manifold \(N \) is homeomorphic either to a handlebody complement in \(N \) or the complement of a handlebody in \(S^3 \). Sections 2 and 3 are independent, but both represent progress towards understanding submanifolds of non-Haken manifolds. In Section 4 we combine the techniques from Section 2 with the results from Section 3 to show that if the submanifold \(M \subset N \) is \(\partial \)-reducible and has connected boundary, then the embedding can be chosen to align a full collection of separating \(\partial \)-reducing disks in \(M \) with similar disks in the complement of \(M \).

2. Handlebodies in non-Haken manifolds

Let \(N \) be a closed orientable 3-manifold, \(F \) a closed orientable surface of non-trivial genus imbedded in \(N \). Recall that \(F \) is compressible if there exists an essential simple closed curve on \(F \) that bounds an imbedded disk \(D \) in \(N \) with interior disjoint from \(F \). \(D \) is a compressing disk for \(F \).

Definition 1. Suppose \(F \) is a separating closed surface in an orientable irreducible closed 3-manifold \(N \). \(F \) is reducible if there exists an essential simple closed curve on \(F \) that bounds compressing disks on both sides of \(F \). The union of the two compressing disks is a reducing sphere for \(F \).
Suppose S is a collection of disjoint reducing spheres for F. A reducing sphere $S \in S$ is redundant if a component of $F - S$ that is adjacent to $S \cap F$ is planar. S is complete if, for any disjoint reducing sphere S', S' is redundant in $S \cup S'$.

Let $\sigma(S)$ denote the number of components of $F - S$ that are not planar surfaces.

Since N is irreducible, any sphere in N is necessarily separating. Suppose a reducing sphere S' is added to a collection S of disjoint reducing spheres. If S' is redundant, the number of non-planar complementary components in F is unchanged, since S' necessarily separates the component of $F - S$ that it intersects and the union of two planar surfaces along a single boundary component is still planar. If S' is not redundant, then the number of non-planar complementary components in F increases by one. Thus we have:

Lemma 2. Suppose $S \subset S'$ are two collections of disjoint reducing spheres for F in N. Then $\sigma(S) \leq \sigma(S')$. Equality holds if and only if each sphere S' in $S' - S$ is redundant in $S' \cup S$. In particular, S is complete if and only if for every collection S' such that $S \subset S'$, $\sigma(S) = \sigma(S')$.

Let H be a handlebody imbedded in N. H has an unknotted core if there exists a pair of transverse simple closed curves $c, d \subset \partial H$ such that $c \cap d$ is a single point, d bounds an imbedded disk in H and c (the core) bounds an imbedded disk in N transverse to ∂H. Note that the interior of the latter imbedded disk may intersect H.

Lemma 3. Let F be a connected, closed, separating, orientable surface in a closed orientable irreducible 3-manifold N. Suppose that F has compressing disks to both sides. Then at least one of the following must hold:

1. F is a Heegaard surface for N.
2. N is Haken.
3. There exist disjoint compressing disks for F on opposite sides of F.

Proof. The proof is an application of the generalized Heegaard decomposition described in [ST]. Since F is compressible to both sides, we can construct a handle decomposition of N starting at F so that F appears as a “thick” surface in the decomposition. If F is not a Heegaard surface, then this decomposition contains a “thin” surface G adjacent to F. If G is incompressible in N, then N is Haken. If G is compressible we apply [CG] to obtain the required disjoint compressing disks for F.

Theorem 4. Let H be a handlebody of genus g imbedded in a closed orientable irreducible non-Haken 3-manifold N. Let G be the complement of H in N. Let $F = \partial H = \partial G$. Suppose F is compressible in G. Then at least one of the following must hold:

1. The Heegaard genus of N is less than or equal to g.
2. F is reducible.
3. H has an unknotted core.

Proof. The proof is by induction on the genus of H. If $g = 1$, then the result of compressing F into G is a 2-sphere, necessarily bounding a ball in N. If a ball it bounds lies in G, then the Heegaard genus of N is ≤ 1. If a ball it bounds contains H, then H is an unknotted solid torus in N, and so it has an unknotted core.
Suppose then that $\text{genus}(H) = g > 1$ and assume inductively that the theorem is true for handlebodies of genus $g - 1$. Suppose that G, the complement of H, has compressible boundary. If G is a handlebody, then $G \cup F$ is a Heegaard splitting of genus g and we are done. So suppose G is not a handlebody. Then by Lemma 3 there are disjoint compressing disks on opposite sides of F, say D in H and E in G. Without loss of generality, we can assume that D is non-separating. Compress H along D to obtain a new handlebody H_1 with boundary F_1; let G_1 be the complement of H_1.

If ∂E is inessential in F_1, then it bounds a disk in $H_1 \subset H$ as well, so F is reducible.

If ∂E is essential in F_1, then E is a compressing disk in G_1 and so we can apply the inductive hypothesis to H_1. If 1 or 3 holds, then it holds for H, and we are done. Suppose instead F_1 is reducible. Let S be a collection of disjoint reducing spheres for F_1 chosen to maximize σ among all possible such collections and then, subject to that condition, further choose S to minimize $|E \cap S|$. Clearly $E \cap S$ contains no closed curves, else replacing a subdisk lying in the disk collection $S \cap G_1$ with an innermost disk of $E - S$ would reduce $|E \cap S|$. Similarly, we have

Claim 1. Suppose ϵ is an arc component of $\partial E - S$ and F_0 is the component of $F_1 - S$ in which ϵ lies. If ϵ separates F_0 (so the ends of ϵ necessarily lie on the same component of ∂F_0), then neither component of $F_0 - \epsilon$ is planar.

Proof of Claim 1. Let c_0 be the closed curve component of $\partial F_0 \subset S \cap F_1$ on which the ends of ϵ lie and, of the two arcs into which the ends of ϵ divide c_0, let α be adjacent to a planar component of $F_0 - \epsilon$. Then the curve $\epsilon \cup \alpha$ clearly bounds a disk in both G_1 and H_1, and then so does the curve $\epsilon' = \epsilon \cup (c_0 - \alpha)$. Let S' be a sphere in N intersecting F_1 in ϵ' and S_0 be the reducing sphere in S containing c_0. Replacing S_0 with S' (or just deleting S_0 if ϵ' is inessential in F_1) gives a new collection S' of disjoint reducing spheres, intersecting ∂E in at least two fewer points. Moreover $\sigma(S') = \sigma(S)$ since the only change in the complementary components in F_1 is to add to one component and delete from another a planar surface along an arc in the boundary. Then the collection S' contradicts our initial choice for S, a contradiction that proves the claim.

Let H' be the closed complement of S in H_1, so H' is itself a collection of handlebodies.

Claim 2. Either F is reducible or $\partial H'$ is compressible in $N - H'$.

Proof of Claim 2. If ∂E is disjoint from S and is inessential in $\partial H'$, then ∂E bounds a disk in H', hence in H, so F is reducible. If ∂E is disjoint from S and is essential in $\partial H'$, then E compresses $\partial H'$ in $N - H'$, verifying the claim. Finally, if E intersects S, consider an outermost disk A cut off from E by S. According to Claim 1, this disk, together with a subdisk of S, constitute a disk E' that compresses $\partial H'$ in $N - H'$, proving the claim.

Following Claim 2, either F is reducible or the inductive hypothesis applies to a component H_0 of H'. If 2 holds for H_0, then consider a reducing sphere S for H_0, isotoped so that the curve $c = S \cap \partial H_0$ is disjoint from the disks $S \cap H_0$. The disk $S - H_0$ may intersect H_1; by general position with respect to the dual 1-handles, each component of intersection is a disk parallel to a component of $S \cap H_1$. But each such disk can be replaced by the corresponding disk in $S - H_1$ so that in the
end c also bounds a disk in \(N - H_1 \). After this change, \(S \) is a reducing sphere for \(F_1 \) in \(N \) and, since \(c \) is essential in \(H_0 \), \(\sigma(S \cup S) > \sigma(S) \), contradicting our initial choice for \(S \). Thus in fact 1 or 3 holds for \(H_0 \), hence also for \(H \).

In the specific case \(N = S^3 \), we apply precisely the same argument, combined with Waldhausen’s theorem \([W]\) on Heegaard splittings of \(S^3 \), to obtain:

\textbf{Corollary 5.} Let \(H \) be a handlebody imbedded in \(S^3 \), and suppose \(G \), the complement of \(H \), has compressible boundary. Then either \(H \) has an unknotted core or the boundary of \(H \) is reducible.

This corollary is similar to \((\text{MT}, \text{Theorem 1.1})\), but no reimbedding of \(S^3 - H \) is required.

3. COMPLEMENTS OF HANDLEBODIES IN NON-HAKEN MANIFOLDS

In \([F]\) (see also \([\text{MT}]\) for a brief version) Fox showed that any compact connected 3-dimensional submanifold \(M \) of \(S^3 \) is homeomorphic to the complement of a union of handlebodies in \(S^3 \). We generalize this result to non-Haken manifolds, showing that a submanifold \(M \) of a non-Haken manifold \(N \) has an almost equally simple description, that is, \(M \) is homeomorphic to the complement of handlebodies either in \(S^3 \) or in \(N \).

\textbf{Definition 6.} Let \(N \) be a compact irreducible 3-manifold, and let \(M \) be a compact 3-submanifold of \(N \). We will say the complement of \(M \) in \(N \) is \(\text{standard} \) if it is homeomorphic to a collection of handlebodies or to \(N \# (\text{collection of handlebodies}) \). (We regard \(B^3 \) as a handlebody of genus 0.)

Note that in the latter case \(M \) is actually homeomorphic to the complement of a collection of handlebodies in \(S^3 \).

\textbf{Theorem 7.} Let \(N \) be a closed orientable irreducible non-Haken 3-manifold, and let \(M \) be a connected compact 3-submanifold of \(N \) with non-empty boundary. Then \(M \) is homeomorphic to a submanifold of \(N \) whose complement is standard.

\textbf{Proof.} The proof will be by induction on \(n + g \) where \(n \) is the number of components of \(\partial M \) and \(g \) is the genus of \(\partial M \), that is, the sum of the genera of its components. If \(n + g = 1 \), then \(\partial M \) is a single sphere. Since \(N \) is irreducible, the sphere bounds a 3-ball in \(N \). So either \(M \) or its complement is a 3-ball and in either case the proof is immediate.

To verify the inductive step, suppose first that \(\partial M \) has multiple components \(T_1, \ldots, T_n, n \geq 2 \). Each component \(T_i \) must bound a distinct component \(J_i \) of \(N - M \) since each must be separating in the non-Haken manifold \(N \). Let \(M' = M \cup J_n \); by inductive assumption \(M' \) can be reimbedded so that its complement is standard. After the reimbedding, remove \(J_n \) from \(M' \) to recover a homeomorph of \(M \) and adjoin \(J_1 \) (now homeomorphic either to a handlebody or to \(N \# (\text{handlebody}) \)) instead. Reimbed the resulting manifold so that its complement is standard and remove \(J_1 \) to recover \(M \), now with standard complement.

Henceforth we can therefore assume that \(\partial M \) is connected and not a sphere. Since \(N \) is non-Haken there exists a compressing disk \(D \) for \(\partial M \) in \(N - \partial M \); the compressing disk lies either in \(M \) or in its closed complement \(\overline{M} \).
Case 1. \(\partial D \) is non-separating on \(\partial M \).

If \(D \) lies inside \(M \), compress \(M \) along \(D \) to obtain \(M' \) and use the induction hypothesis to find an imbedding of \(M' \) with standard complement. Reconstruct \(M \) by attaching a trivial 1-handle to \(M' \), thus simultaneously attaching a trivial 1-handle to the complement.

If \(D \) lies outside \(M \), attach a 2-handle to \(M \) corresponding to \(D \) to obtain \(M' \), whose connected boundary has lower genus. Invoking the inductive hypothesis, imbed \(M' \) in \(N \) with standard complement. Reconstruct \(M \) from \(M' \) by removing a co-core of the attached 2-handle, thus adding a 1-handle to the complement of \(M' \).

Case 2. \(\partial D \) is separating on \(\partial M \).

Suppose \(D \) lies outside \(M \). Then \(D \) also separates the closed complement \(J \) of \(M \) into two components, \(J_1 \) and \(J_2 \), since \(H_2(N) = 0 \). Denote the components of \(\partial M - \partial D \) by \(\partial_1 \subset J_1 \) and \(\partial_2 \subset J_2 \), both of positive genus. Let \(M' = M \cup J_2 \). Reimbed \(M' \) so that its complement is standard. The boundary of \(M' \) consists of \(\partial_1 \) together with a disk. Since the complement of \(M' \) is standard, there is a non-separating compressing disk \(D' \) for \(\partial M' \) contained in the complement of \(M' \). \(D' \) is also a non-separating compressing disk for the reimbedded \(\partial M \) (which is contained in \(M' \)). Apply case 1 to this new imbedding of \(M \).

We can now suppose that the only compressing disks for \(\partial M \) are separating compressing disks lying inside \(M \). Choose a family \(D \) of such \(\partial \)-reducing disks for \(M \) that is maximal in the sense that no component of \(M' = M - D \) is itself \(\partial \)-compressible. Since each compressing disk is separating, \(\text{genus}(\partial M') > 0 \), so \(\partial M' \) is compressible in \(N \). Such a compressing disk \(E \) cannot lie inside \(M' \), by construction, so it lies in the connected manifold \(N - M' \); let \(M_1 \) be the component of \(M' \) on whose boundary \(\partial E \) lies. Since each disk in \(D \) was separating, \(M \) has the simple topological description that it is the boundary-connect sum of the components of \(M' \). So \(M \) can easily be reconstructed from \(M' \) in \(N - M' \) by doing boundary connect sum along arcs connecting each component of \(M' - M_1 \) to \(M_1 \) in \(N - (M' \cup E) \). After this reimbedding of \(M \), \(E \) is a compressing disk for \(\partial M \) that lies outside \(M \), so we can conclude the proof via one of the previous cases.

4. Aligned Fox reimbedding

Now we combine results from the previous two sections and consider this question: If \(M \) is a connected 3-submanifold of a non-Haken manifold \(N \) and \(M \) is \(\partial \)-reducible, to what extent can a reimbedding of \(M \), so that its complement is standard, have its \(\partial \)-reducing disks aligned with meridian disks of its complement. Obviously non-separating disks in \(M \) cannot have boundaries matched with meridian disks of \(N - M \), since \(N \) contains no non-separating surfaces. But at least in the case when \(\partial M \) is connected, this is the only restriction.

Definition 8. For \(M \) a compact irreducible orientable 3-manifold, define a disjoint collection of separating \(\partial \)-reducing disks \(D \subset M \) to be full if each component of \(M - D \) is either a solid torus or is \(\partial \)-irreducible.

For \(M \) reducible, \(D \subset M \) is full if there is a prime decomposition of \(M \) so that for each summand \(M' \) of \(M \) containing the boundary, \(D \cap M' \) is full in \(M' \).

\(M \subset N \) a 3-submanifold is aligned to a standard complement if the complement of \(M \) is standard and there is a (complete) collection of reducing spheres \(S \) for \(\partial M \) so that \(S \cap M \) is a full collection of \(\partial \)-reducing disks for \(M \).
There is a uniqueness theorem, presumably well known, for full collections of disks, which is most easily expressed for irreducible manifolds:

Lemma 9. Suppose M is an irreducible orientable 3-manifold with boundary and M is expressed as a boundary connect sum in two ways: $M = M_1 \natural M_2 \natural \ldots \natural M_n = M_1^* \natural M_2^* \natural \ldots \natural M_n^*$, where each M_i, M_i^* is either a solid torus or ∂-irreducible. Then, after rearrangement, $n^* = n$ and $M_i \cong M_i^*$.

Proof. One can easily prove the theorem from first principles, along the lines of, e.g. [H Theorem 3.21], the standard proof of the corresponding theorem for a connected sum. But a cheap start is to just double M along its boundary to get a manifold DM. The decompositions above double to give connected sum decompositions of DM in which each factor consists of either $S^1 \times S^2$ or the double of an irreducible, ∂-irreducible manifold, which is then necessarily irreducible. Then [H Theorem 3.21] implies that $n = n^*$ and that the two original decompositions of M also each contain the same number of solid tori. After removing these, we are reduced to the case in which the only ∂-reducing disks in M are separating and $n^* = n$.

Following the outline suggested by the proof of [H Theorem 3.21], choose a disk D that separates M into the component M_n and the component $M_1 \natural M_2 \natural \ldots \natural M_{n-1}$. Choose disks E_1, \ldots, E_{n-1} that separate M into the components $M_1^* \natural M_2^* \natural \ldots \natural M_{n}^*$. Choose the disks to minimize the number of intersection components in $D \cap \bigcup \{E_i\}$. Since each manifold is irreducible and ∂-irreducible, a standard innermost disk, outermost arc argument, the genus of ∂-reducing disks in a standard innermost disk, outermost arc argument (in D) shows that D is then disjoint from $\{E_i\}$, so $D \subset M_n^*$ (say). Since M_n^* is ∂-irreducible, D is ∂-parallel in M_n^*. So in fact (with no loss of generality) $M_n \cong M_n^*$ and $M_1 \natural M_2 \natural \ldots \natural M_{n-1} \cong M_1^* \natural M_2^* \natural \ldots \natural M_{n-1}^*$. The result follows by induction.

Theorem 10. Let N be a closed orientable irreducible non-Haken 3-manifold, and M be a connected compact 3-submanifold of N with connected boundary. Then M can be reimbedded in N with standard complement so that M is aligned to the standard complement.

Proof. The proof is by induction on the genus of ∂M. Unless M has a separating ∂-reducing disk, there is nothing beyond the result of Theorem 8 to prove. So we assume that M does have a separating ∂-reducing disk; in particular, the genus of ∂M is $g \geq 2$. We inductively assume that the theorem has been proven whenever the genus of ∂M is less than g.

The first observation is that it suffices to find an embedding of M in N so that there is some reducing sphere S for ∂M in N, for such a reducing sphere divides $J = N - M$ into two components J_1 and J_2. Apply the inductive hypothesis to $M \cup J_1$ to reimbed it with an aligned complement J_1'. Notice that by a standard innermost disk argument, the reducing spheres can be taken to be disjoint from S. After this reimbedding, apply the inductive hypothesis to $M \cup J_2'$ to reimbed it so that its complement J_2' is aligned. After this reimbedding, M has aligned complement $J_1' \cup_{S-M} J_2'$.

Our goal then is to find a reimbedding of M so that afterwards ∂M has a reducing sphere. First use Theorem 4 to reimbed M in N so that its complement J is standard, i.e. either a handlebody or $N \#$ (handlebody). Since M is ∂-reducible, Lemma 3 applies: either M is itself a handlebody (in which case the required reimbedding of M is easy) or there are disjoint compressing disks D in J and E in M. Since J is standard, D can be chosen to be non-separating in J. Then ∂E is
not homologous to \(\partial D \) in \(\partial M \), so \(\partial E \) is either separating in \(\partial M \) or non-separating in \(\partial M - \partial D \). In the latter case, two copies of \(E \) can be banded together along an arc in \(\partial M - \partial D \) to create a separating essential disk in \(M \) that is disjoint from \(D \). The upshot is that we may as well assume that \(D \subset J \) is non-separating and \(E \subset M \) is separating.

Add a 2-handle to \(M \) along \(D \) to get \(M' \), still with standard complement \(J' \). Dually, \(M \) can be viewed as the complement of the neighborhood of an arc \(\alpha \subset M' \). If \(\partial E \) is inessential in \(\partial M' \), it bounds a disk \(D' \) in \(J' \subset J \). Then the sphere \(D' \cup E \) is a reducing sphere for \(M \) as required. So we may as well assume that \(\partial E \) is essential in \(\partial M' \) and of course still separates \(M' \). By the inductive assumption, \(M' \) can be embedded in \(N \) so that its complement is aligned, but note that this does not immediately mean that \(\partial E \) itself bounds a disk in \(N - M' \). Let \(S \) be a complete collection of reducing spheres for \(\partial M' \) intersecting \(M' \) in a full collection of disks.

\(E \) divides \(M' \) into two components, \(U \) and \(V \) with, say, \(\alpha \subset U \). If \(M' \) is reducible (i.e. contains a punctured copy of \(N \)) an innermost (in \(E \)) disk argument ensures that the reducing sphere is disjoint from \(E \). By possibly tubing \(E \) to that reducing sphere, we can ensure that the \(N \)-summand, if it lies in \(M' \), lies in \(U \subset M' \). That is, we can arrange that \(V \) is irreducible. \(E \) extends to a full collection of disks in \(M' \), with the new disks dividing \(U \) and \(V \) into \(\partial \)-connected sums: \(U = U_1 \natural \cdots \natural U_m, V = V_1 \natural \cdots \natural V_n, m, n \geq 1 \), with each \(U_i, V_j \) either \(\partial \)-irreducible or a solid torus (with one of the \(U_i \) possibly containing \(N \) as a connect summand). By Lemma 10, some component \(V' \) of \(M' - S \) is homeomorphic to \(V_n \). Tube together all components of \(S \) incident to \(V' \) along arcs in \(\partial V' \) to get a reducing sphere \(S' \) dividing \(M' \) into two components, one homeomorphic to \(V_n \) and the other homeomorphic to \(U_1 \natural V_2 \natural \cdots \natural V_{n-1} \). The latter homeomorphism carries \(\alpha \subset U \) to an arc \(\alpha' \) that is disjoint from the reducing sphere \(S' \). Then \(M' - \eta(\alpha') \) is homeomorphic to \(M \) and admits the reducing sphere \(S' \). In other words, the reembedding of \(M \) that replaces \(M' - \eta(\alpha) \) with \(M' - \eta(\alpha') \) makes \(\partial M \) reducible in \(N \), completing the argument.

Corollary 11. Given \(M \subset N \) as in Theorem 10, suppose \(D \) is a full set of disks in \(M \). Then, with at most one exception, each component of \(M - D \) embeds in \(S^3 \).

Proof. Following Theorem 10 reembed \(M \) in \(N \) with the standard complement so that \(M \) is aligned to the standard complement. Then there is a collection \(S \) of disjoint spheres in \(N \) so that, via Lemma 10, \(M - S \) and \(M - D \) are homeomorphic. Since \(N \) is irreducible, each component but at most one of \(N - S \) is a punctured 3-ball. Finally, each component of \(N - S \) contains at most one component of \(M - S \) since each component of \(S \) is separating.

References

Department of Mathematics, University of California, Santa Barbara, California 93106
E-mail address: mgscharl@math.ucsb.edu

Department of Mathematics, University of California, Davis, California 95616
E-mail address: thompson@math.ucdavis.edu