Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a cubic-quintic Ginzburg-Landau equation with global coupling


Authors: Juncheng Wei and Matthias Winter
Journal: Proc. Amer. Math. Soc. 133 (2005), 1787-1796
MSC (2000): Primary 35B35, 76E30; Secondary 35B40, 76E06
DOI: https://doi.org/10.1090/S0002-9939-04-07770-6
Published electronically: November 19, 2004
MathSciNet review: 2120279
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study standing wave solutions in a Ginzburg-Landau equation which consists of a cubic-quintic equation stabilized by global coupling

\begin{displaymath}A_t= \Delta A +\mu A + c A^3 -A^5 -k A \left(\int_{R^n} A^2\,dx\right).\end{displaymath}

We classify the existence and stability of all possible standing wave solutions.


References [Enhancements On Off] (What's this?)

  • 1. P. Bates, E.N. Dancer and J. Shi, Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability, Adv. Differential Equations 4 (1999), 1-69. MR 1667283 (99k:35097)
  • 2. P. Coullet and G. Iooss, Instabilities of one-dimensional cellular patterns, Phys. Rev. Lett. 64 (1990), 866-869. MR 1038266 (90m:82017)
  • 3. S.M. Cox and P.C. Matthews, New instabilities in two-dimensional rotating convection and magnetoconvection, Phys. D 149 (2001), 210-229. MR 1815525 (2002a:76068)
  • 4. E.N. Dancer, On stability and Hopf bifurcations for chemotaxis systems, IMS Workshop on Reaction-Diffusion Systems (Shatin, 1999), Methods Appl. Anal. 8 (2001), 245-256. MR 1904528 (2003k:35117)
  • 5. E.N. Dancer, A note on asymptotic uniqueness for some nonlinearities which change sign, Bull. Austral. Math. Soc. 61 (2000), 305-312. MR 1748710 (2001f:35122)
  • 6. B. Gidas, W.M. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^N$, Adv. Math. Suppl. Stud. 7A (1981), 369-402. MR 0634248 (84a:35083)
  • 7. S. Fauve, Pattern forming instabilities, pp. 387-491, in ``Hydrodynamics and nonlinear instabilities'', C. Godrèche and P. Manneville ed., Cambridge University Press, 1998. MR 1629959 (99i:76001)
  • 8. R. Gardner and L.A. Peletier, The set of positive solutions of semilinear equations in large balls, Proc. Roy. Soc. Edinburgh Sect. A 104 (1986), 53-72. MR 0877892 (88e:35063)
  • 9. M.K. Kwong, Uniqueness of positive solutions of $\Delta u-u+u^p=0$in $R^n$, Arch. Rat. Mech. Anal. 105 (1989), 243-266. MR 0969899 (90d:35015)
  • 10. P.C. Matthews and S.M. Cox, Pattern formation with a conservation law, Nonlinearity 13 (2000), 1293-1320. MR 1767960 (2001b:76042)
  • 11. T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems, J. Differential Equations 146 (1998), 121-156. MR 1625731 (99f:35061)
  • 12. H. Herrero and H. Riecke, Bound pairs of fronts in a real Ginzburg-Landau equation coupled to a mean field, Phys. D 85 (1995), 79-92.
  • 13. H. Riecke, Localized structures in pattern-forming systems, in ``Pattern formation in continuous and coupled systems'' (Minneapolis, MN, 1998), 215-229, IMA Vol. Math. Appl. 115, Springer, New York, 1999. MR 1708870 (2000j:35259)
  • 14. H. Riecke and W.-J. Rappel, Coexisting pulses in a model for binary-mixture convection, Phys. Rev. Lett. 75 (1995), 4035-4038.
  • 15. M.I. Tribelsky and K. Tsuboi, New scenario for transition to turbulence?, Phys. Rev. Lett. 76 (1996), 1631-1634.
  • 16. J. Norbury, J. Wei and M. Winter, Existence and stability of singular patterns in a Ginzburg-Landau equation coupled with a mean field, Nonlinearity 15 (2002), 2077-2096. MR 1938482 (2003h:35024)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35B35, 76E30, 35B40, 76E06

Retrieve articles in all journals with MSC (2000): 35B35, 76E30, 35B40, 76E06


Additional Information

Juncheng Wei
Affiliation: Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong
Email: wei@math.cuhk.edu.hk

Matthias Winter
Affiliation: Fachbereich Mathematik, Universität Stuttgart, D-70511 Stuttgart, Germany
Email: winter@mathematik.uni-stuttgart.de

DOI: https://doi.org/10.1090/S0002-9939-04-07770-6
Keywords: Cubic-quintic Ginzburg-Landau equation, stability, pattern formation
Received by editor(s): November 5, 2002
Received by editor(s) in revised form: February 22, 2004
Published electronically: November 19, 2004
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society