TENSOR PRODUCTS
OF σ-WEAKLY CLOSED NEST ALGEBRA SUBMODULES

DONG ZHE
(Communicated by David R. Larson)

Abstract. In this paper we prove that for any unital σ-weakly closed algebra A which is σ-weakly generated by finite-rank operators in A, every σ-weakly closed A-submodule has Property S_σ. In the case of nest algebras, if L_1, \cdots, L_n are nests, we obtain the following n-fold tensor product formula:

$$U_{\phi_1} \otimes \cdots \otimes U_{\phi_n} = U_{\phi_1 \otimes \cdots \otimes \phi_n},$$

where each U_{ϕ_i} is the σ-weakly closed A_{L_i}-submodule determined by an order homomorphism ϕ_i from L_i into itself.

1. Introduction

One of the central results in the theory of tensor products of von Neumann algebras is Tomita's commutation formula:

$$(1) \quad M' \otimes N' = (M \otimes N)',$$

where M and N are von Neumann algebras. It was observed in [2] that if we let L_1 and L_2 denote the projection lattices of M and N respectively, then (1) can be rewritten as

$$(2) \quad \text{Alg} L_1 \otimes \text{Alg} L_2 = \text{Alg} (L_1 \otimes L_2).$$

This version of Tomita's theorem makes sense for any pair of reflexive algebras $\text{Alg} L_1$ and $\text{Alg} L_2$. It remains a deep open question whether the tensor product formula (2) is valid for general reflexive algebras, or even general CSL algebras. However, (2) has been verified in a number of special cases ([2], [4], [5], [6], [7]). In particular, it is known that if L_1 is a commutative subspace lattice that is either completely distributive [8] or of finite width [4], then (2) is valid for L_1 and any subspace lattice L_2.

The main purpose of this paper is to study tensor products of σ-weakly closed submodules of some reflexive algebras (in particular, of nest algebras). Section 1 of this paper is devoted to notation and preliminaries. In Section 2, we make use of slice maps to show that if A is a σ-weakly closed algebra which is σ-weakly generated by finite-rank operators in A, then every σ-weakly closed A-submodule has Property S_σ. As a corollary, we obtain $U_{\tau_1} \otimes U_{\tau_2} = U_{\tau_1 \otimes \tau_2}$, where each U_{τ_i} is

\begin{itemize}
 \item Received by the editors December 17, 2002.
 \item 2000 Mathematics Subject Classification. Primary 47L75.
 \item Key words and phrases. Property S_σ, tensor product, slice map.
\end{itemize}

This project was partially supported by the National Natural Science Foundation of China (No. 10401030) and the Zhejiang Nature Science Foundation (No. M103044).
a σ-weakly closed Alg L_{i}-submodule and L_{i} is a nest. However, the 2-fold tensor product formula cannot be generalized to the n-fold formula by induction (see the beginning of Section 3). So in Section 3, we use another method to prove the n-fold tensor product formula $U_{\phi_{1}} \otimes \cdots \otimes U_{\phi_{n}} = U_{\phi_{1} \otimes \cdots \otimes \phi_{n}}$, where each $U_{\phi_{i}}$ is a σ-weakly closed Alg L_{i}-submodule and L_{i} is a nest. The key to this proof is [3 Theorem 2] and [2 Proposition 2.4].

In this paper, all Hilbert spaces will be separable. Let $B(H)$ be the algebra of bounded operators on H and $F(H)$ be the set of finite-rank operators on H. A sublattice L of the projection lattice of $B(H)$ is said to be a subspace lattice if it contains 0 and 1 and is strongly closed, where we identify projections with their ranges. If the elements of L pairwise commute, L is a commutative subspace lattice (CSL). A nest is a totally ordered subspace lattice. If L is a subspace lattice, Alg L denotes the set of operators in $B(H)$ that leave the elements of L invariant. Note that Alg L is a σ-weakly closed subalgebra of $B(H)$. If L is a CSL, Alg L is said to be a CSL algebra. If L is a nest, Alg L is said to be a nest algebra.

If A is a subset of $B(H)$, then Lat A, the set of projections left invariant by each element of A, is a subspace lattice. A subalgebra A of $B(H)$ is reflexive if $A = \text{Alg Lat } A$. The reflexive algebras are precisely the algebras of the form Alg L, where L is a subspace lattice. If $L_{i} \subseteq B(H_{i})$ ($i = 1, \cdots, n$) are subspace lattices, $L = \bigotimes_{i=1}^{n} L_{i}$ is the subspace lattice in $B(H_{1} \otimes \cdots \otimes H_{n})$ generated by $\{P_{1} \otimes \cdots \otimes P_{n} : P_{i} \in L_{i}, i = 1, \cdots, n\}$. If $S_{i} \subseteq B(H_{i})$ ($i = 1, \cdots, n$) are σ-weakly closed subspace lattices, then $S_{i} \otimes \cdots \otimes S_{n}$ denotes the σ-weakly closed linear span of $\{S_{1} \otimes \cdots \otimes S_{n} : S_{i} \in S_{i}\}$ in $B(H_{1} \otimes \cdots \otimes H_{n})$.

The main technical tool in Section 2 is the use of slice maps. Slice maps were introduced by Tomiyama in [11] and have been used extensively in the study of tensor products of C^*-algebras and tensor products of von Neumann algebras. We recall some definitions and results from [7] and refer the reader to [7] for further results and motivation. If M and N are von Neumann algebras, and ϕ is in the predual M_{*} of M, then the right slice map R_{ϕ} is the unique σ-weakly continuous linear map from $M \overline{\otimes} N \to N$ such that

$$\langle X, \phi \otimes \psi \rangle = \langle R_{\phi}(X), \psi \rangle, \quad \forall X \in M \overline{\otimes} N, \psi \in N_{*}.$$

If $X = A \otimes B$ ($A \in M, B \in N$), then $R_{\phi}(X) = \langle A, \phi \rangle B$. The left slice map $L_{\psi} : M \overline{\otimes} N \to M, \psi \in N_{*}$, is similarly defined. If $S \subseteq M$ and $T \subseteq N$ are σ-weakly closed subspaces, let

$$F(S, T) = \{X \in M \overline{\otimes} N : R_{\phi}(X) \in T \text{ and } L_{\psi}(X) \in S, \quad \forall \phi \in M_{*}, \psi \in N_{*}\}.$$

As noted in [7], we can replace M by $B(H_{1})$ and N by $B(H_{2})$ without affecting $F(S, T)$. Moreover $S \overline{\otimes} T \subseteq F(S, T)$. Tomiyama proved in [12] that if S and T are von Neumann algebras, then

$$S \overline{\otimes} T = F(S, T).$$

His proof uses Tomita’s theorem and, in fact, Tomita’s theorem (1) is equivalent to the validity of (3) for von Neumann algebras. Hence (3) can be considered as a possible general version of Tomita’s theorem for σ-weakly closed subspaces.

A σ-weakly closed subspace $S \subseteq B(H)$ is said to have Property S_{ϕ} if

$$\{X \in S \overline{\otimes} N : R_{\phi}(X) \in T \text{ for all } \phi \in B(H)_{*}\} = S \overline{\otimes} T$$
for all pairs \(\{ T, N \} \), where \(T \) is a \(\sigma \)-weakly closed subspace of a von Neumann algebra \(N \). \(S \) has Property \(S_\sigma \) if and only if \(F(S, T) = S \otimes T \) for all \(\sigma \)-weakly closed subspaces \(T \) of each von Neumann algebra \(N \) ([7, Remark 1.5]).

2. Property \(S_\sigma \)

Let \(A \) be a reflexive subalgebra of \(B(H) \). Suppose that \(E \rightarrow \tau(E) \) is an order homomorphism of \(\text{Lat} A \) into itself (i.e., \(E \leq F \) implies \(\tau(E) \leq \tau(F) \)). Then the set \(U = \{ T \in B(H) : (I - \tau(E))TE = 0, \forall E \in \text{Lat} A \} \) is clearly a \(\sigma \)-weakly closed \(A \)-submodule of \(B(H) \). We denote \(U \) by \(U_\tau \).

Erdos and Power in [1] proved that any \(\sigma \)-weakly closed \(A \)-submodule of \(B(H) \) for a nest algebra \(A \) is of the above form. Here the following result is due to Han Deguang [3]:

Theorem H. Let \(A \) be a unital \(\sigma \)-weakly closed subalgebra which is \(\sigma \)-weakly generated by rank-one operators in \(A \), and let \(U \) be a \(\sigma \)-weakly closed \(A \)-submodule of \(B(H) \). Then \(U \) has the form

\[
U = \{ T \in B(H) : (I - \tau(E))TE = 0, \forall E \in \text{Lat} A \},
\]

where \(E \rightarrow \tau(E) = [UE] \) is an order homomorphism of \(\text{Lat} A \) into itself.

Theorem 2.1. Let \(A \) be a unital \(\sigma \)-weakly closed subalgebra of \(B(H) \) with the property that the finite-rank operators of \(A \) are \(\sigma \)-weakly dense in \(A \). Then every \(\sigma \)-weakly closed \(A \)-submodule has Property \(S_\sigma \).

Proof. Suppose that \(U \) is a \(\sigma \)-weakly closed \(A \)-submodule. Let \(T \) be a \(\sigma \)-weakly closed subspace of a von Neumann algebra \(N \), and suppose that \(X \in U \otimes N \) and \(R_\phi(X) \in T \) for all \(\phi \in B(H)_+ \). It suffices to show that \(X \in U \otimes T \). Let \(\pi \) be the normal \(*\)-isomorphism of \(B(H) \) into \(B(H) \otimes N \) defined by \(\pi(A) = A \otimes I \) for \(A \in B(H) \). If \(F_1, F_2 \in A \cap F(H) \) and \(\phi \in B(H)_+ \), a routine calculation shows that \(R_\phi(\pi(F_1)X\pi(F_2)) = R_{F_2 \phi F_1}(X) \), where \(F_2 \phi F_1 \in B(H)_+ \) is defined by \((A, F_2 \phi F_1) = (F_1 AF_2, \phi) \), \(A \in B(H) \). Hence \(R_\phi(\pi(F_1)X\pi(F_2)) \) is in \(T \) for all \(\phi \in B(H)_+ \). Since \(\pi(F_1)(U \otimes N)\pi(F_2) = F_1 UF_2 \otimes N \) and \(F_1 UF_2 \) has Property \(S_\sigma \) by [7, Proposition 1.7], \(\pi(F_1)X\pi(F_2) \) is in \(F_1 UF_2 \otimes T \). But \(F_1 UF_2 \subseteq U \); thus \(\pi(F_1)X\pi(F_2) \in U \otimes T \). Let \(\{ F_\alpha \} \) be a net in \(A \cap F(H) \) converging \(\sigma \)-weakly to the identity map \(I \). Then \(\pi(F_\alpha)X\pi(F) \) converges \(\sigma \)-weakly to \(X\pi(F) \) for all \(F \in A \cap F(H) \), and so \(X\pi(F) \in U \otimes T \) for all \(F \in A \cap F(H) \). Finally, \(X\pi(F_\alpha) \) converges \(\sigma \)-weakly to \(X \), and so \(X \in U \otimes T \). Hence \(U \) has Property \(S_\sigma \). \(\square \)

It is known from [11] that a commutative subspace lattice \(L \) is completely distributive if and only if the rank-one subalgebra of \(\text{Alg} L \) is \(\sigma \)-weakly dense in \(\text{Alg} L \). Thus we have the following result:

Corollary 2.2. If \(L \) is a completely distributive CSL, then every \(\sigma \)-weakly closed \(\text{Alg} L \)-submodule has Property \(S_\sigma \).

If \(L \) is a completely distributive CSL, it follows from Theorem H that every \(\sigma \)-weakly closed \(\text{Alg} L \)-submodule is of the form \(U_\tau \), where \(E \rightarrow \tau(E) \) is an order homomorphism of \(L \) into itself.

Corollary 2.3. Suppose that \(L_i \) (\(i = 1, 2 \)) are completely distributive CSLs, and that \(U_{\tau_i} \) (\(i = 1, 2 \)) are \(\sigma \)-weakly closed \(\text{Alg} L_i \)-submodules respectively. Then \(U_{\tau_1} \overline{\sigma U_{\tau_2}} = F(U_{\tau_1}, U_{\tau_2}) \).
Proof. A σ-weakly closed subspace S has Property S_σ if and only if $\mathcal{S} \overline{\mathcal{T}} = F(S, T)$ for all σ-weakly closed subspaces T ([2] Remark 1.5). Thus the corollary follows from Corollary 2.2. □

In the case of nest algebras, we can say more about tensor products of σ-weakly closed nest algebra submodules. In the rest of this paper, we suppose that L_i ($i = 1, 2, \cdots, n$) are nests on separable complex Hilbert spaces \mathcal{H}_i and τ_i are order homomorphisms of L_i into L_i.

If $L \in L_1 \otimes \cdots \otimes L_n$, it follows from [2] Proposition 2.4 that

$$L = \vee \{E_1 \otimes \cdots \otimes E_n : E_1 \otimes \cdots \otimes E_n \leq L\}.$$

Thus we can define

$$(\tau_1 \otimes \cdots \otimes \tau_n)(L) = \vee \{\tau_1(E_1) \otimes \cdots \otimes \tau_n(E_n) : E_1 \otimes \cdots \otimes E_n \leq L\}.$$

Obviously, $(\tau_1 \otimes \cdots \otimes \tau_n)(E_1 \otimes \cdots \otimes E_n) = \tau_1(E_1) \otimes \cdots \otimes \tau_n(E_n)$. Thus $\tau_1 \otimes \cdots \otimes \tau_n$ is a well-defined order homomorphism of $L_1 \otimes \cdots \otimes L_n$ into itself and $U_{\tau_1 \otimes \cdots \otimes \tau_n}$ is a σ-weakly closed $\text{Alg}(L_1 \otimes \cdots \otimes L_n)$-submodule. Hence the equality $\text{Alg}L_1 \otimes \cdots \otimes \text{Alg}L_n = \text{Alg}(L_1 \otimes \cdots \otimes L_n)$ of [2] Theorem 2.6] can be rewritten as

$$U_{\tau_1} \otimes \cdots \otimes U_{\tau_n} = U_{\tau_1 \otimes \cdots \otimes \tau_n},$$

where I_i is the identity map of L_i into L_i.

Lemma 2.4. Let L_i ($i = 1, 2$) be nests on separable Hilbert spaces \mathcal{H}_i and τ_i ($i = 1, 2$) be order homomorphisms of L_i into L_i. Then $U_{\tau_1 \otimes \tau_2} = F(U_{\tau_1}, U_{\tau_2})$.

Proof. Suppose that $X \in U_{\tau_1 \otimes \tau_2} \subseteq \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2)$. If $E_2 \in L_2$ and $\phi \in \mathcal{B}(\mathcal{H}_1)_*$, it follows from [7] (1.3) that

$$\tau_2(E_2)R_\phi(X)E_2 = R_\phi((I_1 \otimes \tau_2(E_2))X(I_1 \otimes E_2)) = R_\phi((I_1 \otimes \tau_2(E_2))(\tau_1(I_1) \otimes \tau_2(E_2))X(I_1 \otimes E_2))$$

$$= R_\phi((\tau_1(I_1) \otimes \tau_2(E_2))X(I_1 \otimes E_2)) = R_\phi(X(I_1 \otimes E_2)).$$

So $R_\phi(X) \in U_{\tau_2}$. Similary, $L_\phi(X) \in U_{\tau_1}$ for all $\psi \in \mathcal{B}(\mathcal{H}_2)_*$. Hence by the definition of $F(U_{\tau_1}, U_{\tau_2})$, we have $U_{\tau_1 \otimes \tau_2} \subseteq F(U_{\tau_1}, U_{\tau_2})$.

Conversely, suppose that $X \in F(U_{\tau_1}, U_{\tau_2})$. If $E_2 \in L_2$ and $\phi \in \mathcal{B}(\mathcal{H}_1)_*$, then $\tau_2(E_2)R_\phi(X)E_2 = R_\phi(X)E_2$. Thus $R_\phi((I_1 \otimes \tau_2(E_2))X(I_1 \otimes E_2)) = R_\phi(X(I_1 \otimes E_2))$ for all $\phi \in \mathcal{B}(\mathcal{H}_1)_*$. It follows from [7] (1.5) that

$$(I_1 \otimes \tau_2(E_2))X(I_1 \otimes E_2) = X(I_1 \otimes E_2).$$

Similarly, if $E_1 \in L_1$, we have that $X(E_1 \otimes I_2) = (\tau_1(E_1) \otimes I_2)X(E_1 \otimes I_2)$. Therefore,

$$X(E_1 \otimes E_2) = X(E_1 \otimes I_2)(I_1 \otimes E_2)$$

$$= (\tau_1(E_1) \otimes I_2)(I_1 \otimes E_2)(E_1 \otimes I_2) = (\tau_1(E_1) \otimes I_2)(I_1 \otimes \tau_2(E_2))X(E_1 \otimes E_2)$$

$$= (\tau_1(E_1) \otimes \tau_2(E_2))X(E_1 \otimes E_2).$$

Thus, by virtue of [2] Proposition 2.4, it is easy to show that $XL \subseteq (\tau_1 \otimes \tau_2)(L)$ for each $L \in L_1 \otimes L_2$. Hence $X \in U_{\tau_1 \otimes \tau_2}$ and $U_{\tau_1 \otimes \tau_2} = F(U_{\tau_1}, U_{\tau_2})$. □

Theorem 2.5. Let L_i and τ_i be as in the preceding lemma. Then $U_{\tau_1} \overline{\otimes} U_{\tau_2} = U_{\tau_1 \otimes \tau_2}$.

Proof. Since every nest is a completely distributive CSL, the theorem follows from Corollary 2.3 and Lemma 2.4, obviously. □
3. The \(n \)-fold tensor product formula

Since \(L_1 \otimes L_2 \) is not totally ordered in general, we cannot deduce the tensor product formula \(\mathcal{U}_{r_1} \otimes \mathcal{U}_{r_2} = \mathcal{U}_{r_1 \otimes r_2} \) by

\[
\mathcal{U}_{r_1} \otimes \mathcal{U}_{r_2} = \mathcal{U}_{(r_1 \otimes r_2)} = \mathcal{U}_{r_1 \otimes r_2} \otimes \mathcal{U}_{r_3}.
\]

(In order to use Theorem 2.5, the second equality needs the totally ordered property of \(L_1 \otimes L_2 \).) So we cannot generalize Theorem 2.5 to \(\mathcal{U} \)-fold tensor products for \(n > 2 \) by induction. In this section, instead of the slice maps, we shall use Theorem H to prove the \(\mathcal{U} \)-fold tensor product formula. Let \(L_i \) \((i = 1, \cdots, n)\) be nests and let \(\mathcal{U}_i \) be \(\mathcal{U} \)-weakly closed \(Alg L_i \)-submodules. From Theorem H, it follows from \(\mathcal{U}_i = \mathcal{U}_{r_i} \), where \(r_i(E) = [\mathcal{U}_i E] \) for any \(E \in L_i \). In the rest of this section, we always use \(r_i \) to denote these special order homomorphisms.

Lemma 3.1. For each \(i = 1, \cdots, n \), let \(E_i \in L_i \) and \(f_i \in E_i \) such that \([Alg L_i f_i] = E_i\). Then \([Alg L_i \otimes \cdots \otimes L_n f_n] = E_1 \otimes \cdots \otimes E_n\).

Proof. Since \(\mathcal{U}_i \cdot Alg L_i = \mathcal{U}_{r_i} \), \([\mathcal{U}_i, f] = [\mathcal{U}_i f] \). By virtue of \([2]\) Lemma 2.2,

\[
E_1 \otimes \cdots \otimes E_n = [(Alg L_1 \otimes \cdots \otimes Alg L_n)(f_1 \otimes \cdots \otimes f_n)].
\]

Thus, \((\mathcal{U}_{r_1} \otimes \cdots \otimes \mathcal{U}_{r_n})(Alg L_1 \otimes \cdots \otimes Alg L_n) = \mathcal{U}_{r_1} \otimes \cdots \otimes \mathcal{U}_{r_n},

\[
[\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n](f_1 \otimes \cdots \otimes f_n) = [\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n f_n] = [\mathcal{U}_1 f_1] \otimes \cdots \otimes [\mathcal{U}_n f_n].
\]

Hence it suffices to prove that

\[
[(\mathcal{U}_{r_1} \otimes \cdots \otimes \mathcal{U}_{r_n})(f_1 \otimes \cdots \otimes f_n)] = [\mathcal{U}_1 f_1] \otimes \cdots \otimes [\mathcal{U}_n f_n].
\]

If \(g_i \) is any vector in \([\mathcal{U}_i f_i] \), then \(g_i \) can be norm approximated by vectors of the form \(T_i f_i \), where \(T_i \in \mathcal{U}_{r_i} \). Hence \(g_1 \otimes \cdots \otimes g_n \) can be approximated by vectors of the form \(T_1 f_1 \otimes \cdots \otimes T_n f_n = (T_1 \otimes \cdots \otimes T_n)(f_1 \otimes \cdots \otimes f_n) \). Thus any vector of the form \(g_1 \otimes \cdots \otimes g_n \) with \(g_i \in [\mathcal{U}_i f_i] \) lies in \([\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n f_n]\).

Since such vectors generate \([\mathcal{U}_1 f_1] \otimes \cdots \otimes [\mathcal{U}_n f_n] \), we have \([\mathcal{U}_1 f_1] \otimes \cdots \otimes [\mathcal{U}_n f_n] \subseteq [\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n f_n]\).

To prove the reverse inequality, for any \(T_i \in \mathcal{U}_{r_i} \), we have that

\[
(\mathcal{U}_{r_1} f_1) \otimes \cdots \otimes (\mathcal{U}_{r_n} f_n) = (\mathcal{U}_1 f_1) \otimes \cdots \otimes (\mathcal{U}_n f_n) = (f_1 \otimes \cdots \otimes f_n) = T_1 E_1 \otimes \cdots \otimes T_n E_n = (T_1 \otimes \cdots \otimes T_n)(E_1 \otimes \cdots \otimes E_n).
\]

This shows that

\[
[\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n f_n] = [\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n](E_1 \otimes \cdots \otimes E_n) = [\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n](f_1 \otimes \cdots \otimes f_n).
\]

Thus

\[
[\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n f_n] = [\mathcal{U}_1 f_1] \otimes \cdots \otimes [\mathcal{U}_n f_n].
\]

Therefore

\[
[\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n f_n] = [\mathcal{U}_1 f_1] \otimes \cdots \otimes [\mathcal{U}_n f_n].
\]

This completes the proof. \(\square \)
Theorem 3.2. Let \mathcal{U}_i ($i = 1, \cdots, n$) be σ-weakly closed $\text{Alg} \mathcal{L}_i$-submodules and $\tau_i(E) = [\mathcal{U}_i E]$ for any $E \in \mathcal{L}_i$. Then $\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n = \mathcal{U}_{1 \otimes \cdots \otimes n}$.

Proof. It is obvious that $\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n$ is a σ-weakly closed $\text{Alg} \mathcal{L}_1 \otimes \cdots \otimes \text{Alg} \mathcal{L}_n$-submodule. By virtue of [2] Theorem 2.6, $\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n$ is a σ-weakly closed $\text{Alg}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)$-submodule. It follows from [2] Proposition 2.7 that $\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n$ is a completely distributive CSL. Thus, Theorem H shows that $\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n$ is determined by the order homomorphism $L \to ([\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n]L)$ of $\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n$ into itself.

Now suppose that $E_i \in \mathcal{L}_i$. For each i, choose a vector $v_i \in E_i$ such that $[(\text{Alg} \mathcal{L}_i)v_i] = E_i$ (the proof of the existence of such v_i is routine). It follows from Lemma 3.1 that

$$
([\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n](E_1 \otimes \cdots \otimes E_n)) = [\mathcal{U}_1 E_1] \otimes \cdots \otimes [\mathcal{U}_n E_n] = \tau_1(E_1) \otimes \cdots \otimes \tau_n(E_n) = (\tau_1 \otimes \cdots \otimes \tau_n)(E_1 \otimes \cdots \otimes E_n).
$$

If $L \subseteq \mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n$, [2] Proposition 2.4 shows that

$$
L = \lor\{E_1 \otimes \cdots \otimes E_n \mid E_1 \otimes \cdots \otimes E_n \leq L\}.
$$

Thus,

$$
[\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n]L = \lor\{([\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n](E_1 \otimes \cdots \otimes E_n)) \mid E_1 \otimes \cdots \otimes E_n \leq L\} = \lor\{(\tau_1 \otimes \cdots \otimes \tau_n)(E_1 \otimes \cdots \otimes E_n) \mid E_1 \otimes \cdots \otimes E_n \leq L\} = (\tau_1 \otimes \cdots \otimes \tau_n)(L).
$$

Hence $\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n$ and $\mathcal{U}_{1 \otimes \cdots \otimes n}$ are σ-weakly closed $\text{Alg}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n)$-submodules determined by the same order homomorphism. This shows that

$$
\mathcal{U}_1 \otimes \cdots \otimes \mathcal{U}_n = \mathcal{U}_{1 \otimes \cdots \otimes n}.
$$

\[\square\]

Given general order homomorphisms ϕ_i from \mathcal{L}_i into \mathcal{L}_i, we will consider the relation between $\mathcal{U}_\phi \otimes \cdots \otimes \mathcal{U}_{\phi_n}$ and $\mathcal{U}_{\phi_1 \otimes \cdots \otimes n}$. We need some lemmas at first.

For non-zero vectors $x, y \in \mathcal{H}$, the rank-one operator xy^* is defined by the equation

$$(xy^*)(z) = (z, y)x, \quad \forall z \in \mathcal{H}.$$

Lemma 3.3. Suppose that \mathcal{L} is a subspace lattice, and that \mathcal{U}_ϕ is the σ-weakly closed $\text{Alg} \mathcal{L}$-submodule determined by an order homomorphism ϕ from \mathcal{L} into itself. Then a rank-one operator $xy^* \in \mathcal{U}_\phi$ if and only if there exists an element $N \in \mathcal{L}$ such that $x \in N$ and $y \in \phi_\sim(N)^+$, where $\phi_\sim(N) = \lor\{G \in \mathcal{L} : \phi(G) \geq N\}$.

Proof. The proof is routine. We leave the details to the interested readers. \[\square\]

Lemma 3.4. Let \mathcal{L}_i be a nest and ϕ_i be an order homomorphism from \mathcal{L}_i into itself. Define $\psi_i : I_1 \otimes \cdots \otimes I_i \otimes \cdots \otimes I_n \to I_1 \otimes \cdots \otimes I_i \otimes \cdots \otimes I_n$ by

$$
\psi_i(I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n) = I_1 \otimes \cdots \otimes \phi_i(N_i) \otimes \cdots \otimes I_n, \quad \forall N_i \in \mathcal{L}_i.
$$

Then the rank-one operator $xy^* \in \mathcal{U}_{\phi_i}$ if and only if there exists an element $N_i \in \mathcal{L}_i$ such that $x \in I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n$ and $y \in I_1 \otimes \cdots \otimes \phi_{i\sim}(N_i)^+ \otimes \cdots \otimes I_n$.\[\square\]
\textbf{Proof}. Certainly \(\psi_i \) is an order homomorphism from \(I_1 \otimes \cdots \otimes \mathcal{L}_i \otimes \cdots \otimes I_n \) into itself, and \(\mathcal{U}_{\psi_i} \) is the \(\sigma \)-weakly closed \(\text{Alg}(I_1 \otimes \cdots \otimes \mathcal{L}_i \otimes \cdots \otimes I_n) \)-submodule determined by \(\psi_i \). By virtue of Lemma 3.3, a rank-one operator \(xy^* \in \mathcal{U}_{\psi_i} \) if and only if there exists an element \(N_i \in \mathcal{L}_i \) such that \(x \in I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n \) and \(y \in \psi_{i \sim}(I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n)^\perp \). In the following, we compute
\[\psi_{i \sim}(I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n)^\perp. \]

By the definition of \(\psi_{i \sim} \), we have
\begin{align*}
\psi_{i \sim}(I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n) &= \{ I_1 \otimes \cdots \otimes G_i \otimes \cdots \otimes I_n : \psi_i(I_1 \otimes \cdots \otimes G_i \otimes \cdots \otimes I_n) \not\geq I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n \} \\
&= \{ I_1 \otimes \cdots \otimes G_i \otimes \cdots \otimes I_n : I_1 \otimes \cdots \otimes \psi_i(G_i) \otimes \cdots \otimes I_n \not\geq I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n \} \\
&= \{ I_1 \otimes \cdots \otimes (\psi_i(G_i) \not\geq N_i) \} \\
&= I_1 \otimes \cdots \otimes (\forall \in \mathcal{L}_i) \psi_{i \sim}(N_i) \otimes \cdots \otimes I_n,
\end{align*}
and so \(\phi_{i \sim}(I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n)^\perp = I_1 \otimes \cdots \otimes \phi_{i \sim}(N_i)^\perp \otimes \cdots \otimes I_n. \quad \square
\]

\textbf{Proposition 3.5}. Let \(\mathcal{L}_i \) \((i = 1, \ldots, n)\) be nests and \(\phi_i \) be order homomorphisms from \(\mathcal{L}_i \) into itself. Then a rank-one operator \(xy^* \in \mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n} \) if and only if there exist \(N_i \in \mathcal{L}_i \) such that \(x \in I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n \) and \(y \in \phi_{i \sim}(N_1)^\perp \otimes \cdots \otimes \phi_{n \sim}(N_n)^\perp \).

\textbf{Proof}. Set \(\mathcal{F}_i = I_1 \otimes \cdots \otimes \mathcal{L}_i \otimes \cdots \otimes I_n \), and define \(\psi : \mathcal{F}_i \rightarrow \mathcal{F}_i \) by
\[\psi(I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n) = I_1 \otimes \cdots \otimes \phi_i(N_i) \otimes \cdots \otimes I_n, \quad \forall N_i \in \mathcal{L}_i. \]
Each \(\psi_i \) is an order homomorphism from \(\mathcal{F}_i \) into itself and \(\mathcal{U}_{\psi_i} \) is the \(\sigma \)-weakly closed \(\text{Alg}(\mathcal{F}_i) \)-submodules determined by \(\psi_i \). Thus we have the equation \(\mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n} = \mathcal{U}_{\psi_1} \cap \cdots \cap \mathcal{U}_{\psi_n} \). In fact, by virtue of [2 Proposition 2.4],
\[L = \{ N_1 \otimes \cdots \otimes N_n : N_1 \otimes \cdots \otimes N_n \leq L \} \quad \text{for any} \quad L \in \mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n. \]
Thus it is easy to show that
\[\mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n} = \{ T \in \mathcal{B}(H_1 \otimes \cdots \otimes H_n) : T(N_1 \otimes \cdots \otimes N_n) \leq \phi_1(N_1) \otimes \cdots \otimes \phi_n(N_n), \forall N_i \in \mathcal{L}_i \}, \]
and so \(\mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n} \subseteq \mathcal{U}_{\psi_1} \cap \cdots \cap \mathcal{U}_{\psi_n} \). For any \(T \in \mathcal{U}_{\psi_1} \cap \cdots \cap \mathcal{U}_{\psi_n} \), we have that for any \(N_i \in \mathcal{L}_i \),
\[T(N_1 \otimes \cdots \otimes N_n) \subseteq T(I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n) \subseteq I_1 \otimes \cdots \otimes \phi_i(N_i) \otimes \cdots \otimes I_n, \quad \forall 1 \leq i \leq n. \]
Thus \(T(N_1 \otimes \cdots \otimes N_n) \subseteq \phi_1(N_1) \otimes \cdots \otimes \phi_n(N_n) \) and \(T \in \mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n} \). Hence \(\mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n} = \mathcal{U}_{\psi_1} \cap \cdots \cap \mathcal{U}_{\psi_n} \). From Lemma 3.4 it follows that for any \(1 \leq i \leq n \), a rank-one operator \(xy^* \in \mathcal{U}_{\psi_i} \) if and only if there exists \(N_i \in \mathcal{L}_i \) such that \(x \in I_1 \otimes \cdots \otimes N_i \otimes \cdots \otimes I_n \) and \(y \in \phi_{i \sim}(N_i)^\perp \otimes \cdots \otimes I_n \). Therefore a rank-one operator \(xy^* \in \mathcal{U}_{\psi_i} \cap \cdots \cap \mathcal{U}_{\psi_n} \) if and only if there exists \(N_i \in \mathcal{L}_i \) \((1 \leq i \leq n)\) such that \(x \in N_1 \otimes \cdots \otimes N_n \) and \(y \in \phi_{i \sim}(N_i)^\perp \otimes \cdots \otimes \phi_{n \sim}(N_n)^\perp \). \quad \square

\textbf{Lemma 3.6}. Suppose that \(\mathcal{L} \) is a subspace lattice and that \(\mathcal{U}_\phi \) is the \(\sigma \)-weakly closed \(\text{Alg} \mathcal{L} \)-submodule determined by an order homomorphism \(\phi \) from \(\mathcal{L} \) into itself. Then \(\tau \leq \phi \) and \(\tau_{\sim} = \phi_{\sim} \), where \(\tau(E) = [\mathcal{U}_\phi E] \) for any \(E \in \mathcal{L} \).
Proof. It follows from the definition of \(\mathcal{U}_\phi \) that
\[
\tau(E) = [\mathcal{U}_\phi E] \leq \phi(E) \quad \text{for any } E \in \mathcal{L}.
\]
So \(\tau \leq \phi \).

Since \(\tau \leq \phi \), we have \(\tau_\omega \geq \phi_\omega \). So it suffices to show that \(\tau_\omega \leq \phi_\omega \). If not, there exists \(E \in \mathcal{L} \) such that \(\tau_\omega(E) \notin \phi_\omega(E) \). It follows from the definition of \(\tau_\omega \) that there exists \(F \in \mathcal{L} \) such that \(\tau(F) \nleq E \) and \(F \nleq \phi(E) \). Thus we can choose non-zero vectors \(x, y \) such that \(x \in E \) and \(x \notin \tau(F) \), \(y \in \phi(E)^\perp \) and \(y \notin F^\perp \). From Lemma 3.3, it follows that \(x \otimes y \in \mathcal{U}_\phi \). Since \((1 - \tau(F))(x \otimes y)F \neq 0 \), \(x \otimes y \notin \mathcal{U}_\tau \). However it follows from the proof of Theorem H that \(\mathcal{U}_\tau = \mathcal{U}_\phi \). This is a contradiction. Accordingly, \(\tau_\omega \leq \phi_\omega \). \(\square \)

Now we are in the position to show the general tensor product formula of \(\sigma \)-weakly closed \(\mathcal{L}_i \)-submodules.

Theorem 3.7. Let \(\mathcal{L}_i \ (1 = 1, \cdots, n) \) be nests and \(\phi_i \) be order homomorphisms from \(\mathcal{L}_i \) into itself. Then \(\mathcal{U}_{\phi_1} \otimes \cdots \otimes \mathcal{U}_{\phi_n} = \mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n} \).

Proof. It follows from Theorem H that \(\mathcal{U}_{\phi_i} = \mathcal{U}_{\tau_i} \), where \(\tau_i(E) = [\mathcal{U}_{\phi_i} E] \) for any \(E \in \mathcal{L}_i \). Thus by virtue of Theorem 3.2, we have that
\[
\mathcal{U}_{\phi_1} \otimes \cdots \otimes \mathcal{U}_{\phi_n} = \mathcal{U}_{\tau_1} \otimes \cdots \otimes \mathcal{U}_{\tau_n}.
\]
So it suffices to show \(\mathcal{U}_{\tau_1} \otimes \cdots \otimes \tau_n = \mathcal{U}_{\phi_1 \otimes \cdots \otimes \phi_n} \). Since \(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n \) is a completely distributive CSL (\cite{2}, Proposition 2.7), it follows from \cite{10} Theorem 3 that the rank-one operators of \(\text{Alg}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n) \) are \(\sigma \)-weakly dense in \(\text{Alg}(\mathcal{L}_1 \otimes \cdots \otimes \mathcal{L}_n) \). So it is routine to show that the linear spans of rank-one operators in \(\mathcal{U}_{\tau_1} \otimes \cdots \otimes \tau_n \) and \(\mathcal{U}_{\phi_1} \otimes \cdots \phi_n \) are \(\sigma \)-weakly dense in \(\mathcal{U}_{\tau_1} \otimes \cdots \otimes \tau_n \) and \(\mathcal{U}_{\phi_1} \otimes \cdots \phi_n \) respectively. From Proposition 3.5 and Lemma 3.6, it follows that \(\mathcal{U}_{\tau_1} \otimes \cdots \otimes \tau_n \) and \(\mathcal{U}_{\phi_1} \otimes \cdots \phi_n \) have the same rank-one operators. Therefore \(\mathcal{U}_{\tau_1} \otimes \cdots \otimes \tau_n = \mathcal{U}_{\phi_1} \otimes \cdots \phi_n \).

\(\square \)

Remark 3.8. Theorem 2.5 is a particular case of Theorem 3.2. In \cite{3}, Theorem 2.2 shows that \(\mathcal{U}_{\tau_i} \ (i = 1, \cdots, n) \) are reflexive subspaces. Combining the above result, we know that the tensor product of \(\mathcal{U}_{\tau} \) is also reflexive. It is natural to ask whether the tensor product of reflexive subspaces is also reflexive. This seems a challenging problem.
σ-WEEKLY CLOSED NEST ALGEBRA SUBMODULES

DEPARTMENT OF MATHEMATICS, ZHEJIANG UNIVERSITY, HANGZHOU, 310027, PEOPLE’S REPUBLIC OF CHINA

E-mail address: dongzhe@zju.edu.cn