Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Monotone periodic orbits for torus homeomorphisms

Author: Kamlesh Parwani
Journal: Proc. Amer. Math. Soc. 133 (2005), 1677-1683
MSC (2000): Primary 37E30, 54H20; Secondary 58F20, 57M60
Published electronically: December 21, 2004
MathSciNet review: 2120254
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $f$ be a homeomorphism of the torus isotopic to the identity and suppose that there exists a periodic orbit with a non-zero rotation vector $(\frac{p}{q},\frac{r}{q})$. Then $f$ has a topologically monotone periodic orbit with the same rotation vector.

References [Enhancements On Off] (What's this?)

  • [Bd1] P. Boyland, Rotation sets and monotone orbits for annular homeomorphisms, Comm. Math. Helv., 67 (1992), 203-213. MR 1161281 (93k:58180)
  • [Bd2] P. Boyland, Isotopy stability for dynamical systems on surfaces, Geometry and topology in dynamics, Contemp. Math., 246 (1999), 17-45. MR 1732369 (2001i:37063)
  • [BHG] P. Boyland, T. Hall, and J. Guaschi, L'ensemble de rotation des homéomorphismes pseudo-Anosov, C.R. Acad. Sci. Paris Sér. I Math., 316 (1993), 1077-1080. MR 1222976 (94g:58175)
  • [CB] A. Casson, S. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Math. Soc., Stud. Texts, 9 (1988), Cambridge University Press. MR 0964685 (89k:57025)
  • [Fa] A. Fathi, An orbit closing proof of Brouwer's lemma on translation arcs, Ensign. Math., 33 (1987), 315-322. MR 0925994 (89d:55004)
  • [FLP] A. Fathi, F. Laudenbach, V. Poenaru, Travaux de Thurston sur les surfaces, Asterisque 66-67 (1979). MR 0568308 (82m:57003)
  • [Fr] J. Franks, Generalizations of the Poincaré-Birkhoff theorem, Ann. of Math., 128 (1988), 139-151. MR 0951509 (89m:54052)
  • [Hn] M. Handel, The rotation set of a homeomorphism of the annulus is closed, Comm. Math. Phys., 127 (1990), no. 2, 339-349. MR 1037109 (91a:58102)
  • [Ka] A. Katok, Some remarks on the Birkhoff and Mather twist theorems, Ergod. Th. and Dynam. Sys., 2 (1982), 183-194. MR 0693974 (84m:58041)
  • [Lc] P. LeCalvez, Dynamical properties of diffeomorphisms of the annulus and of the torus, SMF/AMS Texts and Monographs 4, American Mathematical Society, Providence (2000). MR 1747730 (2000m:37059)
  • [ML] J. Llibre and R. Mackay, Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity , Ergodic Theory Dynam. Systems 11 (1991), no. 1, 115-128. MR 1101087 (92b:58184)
  • [Pa1] K. Parwani, Simple braids for surface homeomorphisms, preprint.
  • [Pa2] K. Parwani, Thesis, Northwestern University, 2003.
  • [Th] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. A.M.S., 19 (1988), 417-431. MR 0956596 (89k:57023)
  • [Zg] H. Zieschang, Finite groups of mapping classes of surfaces, Lecture Notes in Mathematics 875. Springer-Verlag, Berlin (1981). MR 0643627 (86g:57001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37E30, 54H20, 58F20, 57M60

Retrieve articles in all journals with MSC (2000): 37E30, 54H20, 58F20, 57M60

Additional Information

Kamlesh Parwani
Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208

Keywords: Homeomorphisms, periodic orbits, rotation vectors
Received by editor(s): January 12, 2004
Published electronically: December 21, 2004
Communicated by: Michael Handel
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society