LIE ALGEBRAS
WITH FINITE GELFAND-KIRILLOV DIMENSION

DAVID RILEY AND HAMID USEFI

(Communicated by Martin Lorenz)

Abstract. We prove that every finitely generated Lie algebra containing a
nilpotent ideal of class c and finite codimension n has Gelfand-Kirillov di-

mension at most cn. In particular, finitely generated virtually nilpotent Lie
algebras have polynomial growth.

1. Introduction and statement of results

Groups with polynomial growth are very well understood. Indeed, according
to the famous result of Milnor, Wolf and Gromov ([4]), a finitely generated group
has polynomial growth precisely when it contains a nilpotent normal subgroup
of finite index. While the class of associative algebras with polynomial growth
has not yet yielded a similar characterisation, Berele ([3]) has provided us with
an illuminating sufficient condition: every finitely generated associative algebra
satisfying a nontrivial polynomial identity has polynomial growth.

In contrast, the class of Lie algebras with polynomial growth remains much of a
mystery. On the one hand, Lichtman and Ufnarovski ([8]) proved that the growth
of every finitely generated free soluble Lie algebra of derived length $k \geq 3$ is almost
exponential (and therefore not polynomial). So not every finitely generated Lie
PI-algebra has polynomial growth; in other words, the most obvious Lie-theoretic
analogue of Berele’s theorem is false.

On the other hand, it follows from results of Shmelkin that the case of derived
length 2 is correctly omitted since every n-generator metabelian Lie algebra has
Gelfand-Kirillov dimension at most n (see [11], [7] or [6]). Petrogradsky extended
this result in [9] to the class of all finitely generated nilpotent-by-nilpotent Lie
algebras (cf. the Corollary below). Our present aim is to extend Petrogradsky’s
result to the class of all finitely generated virtually nilpotent Lie algebras. Recall
that an algebra is said to be virtually in a class \mathcal{X} if it contains an ideal of finite
codimension in the class \mathcal{X}.

Theorem. Let L be a finitely generated Lie algebra over a field F. If L contains a
nilpotent ideal I of class c such that $\dim_F(L/I) = n < \infty$, then $GK\text{-dim}(L) \leq cn$.
In particular, every finitely generated virtually nilpotent Lie algebra has polynomial
growth.
In Section 3, we shall provide an example to show that this estimate is precise. Let \mathcal{N}_c denote the variety of all nilpotent Lie algebras of class at most c.

Corollary (9). The free k-generator Lie algebra in the variety $\mathcal{N}_c\mathcal{N}_d$ has GK-dimension at most cn, where n is the dimension of the free k-generated Lie algebra in \mathcal{N}_d.

Unlike in the group-theoretic situation, being virtually nilpotent is not a necessary condition for a finitely generated Lie algebra to have polynomial growth. In fact, there exist Lie algebras of GK-dimension 1 that are not even virtually soluble:

Example A. Let F be a field of characteristic zero and denote by W the positive part of the Witt algebra. In other words, W is the Lie F-algebra with basis $\{e_i | i \geq 1\}$ and relations $[e_i, e_j] = (j-i)e_{i+j}$. Direct calculations show that $\text{GK-dim}(W) = 1$ and yet W is not virtually soluble.

Example B. Let p be a prime and let F be a field of characteristic p. Then according to a result of Shalev (10), there exists a graded Lie F-algebra $L = \bigoplus_{i \geq 1} L_i$ of maximal class that is not virtually soluble. Here having maximal class means that L is generated by L_1 and satisfies $\dim_F(L_1) = 2$ and $\dim_F(L_i) = 1$ for all $i \geq 2$. The GK-dimension of any such algebra is 1.

Before closing this section, the authors would like to thank Vesselin Drensky and Alexander Lichtman for their useful comments.

2. Proof of the Theorem

Lemma 1. Let L be a finitely generated Lie algebra containing a nilpotent ideal I of finite codimension. Then I is finitely generated as an ideal of L.

Proof. We use induction on the nilpotence class c of I. In the case $c = 1$, L is finitely generated and virtually abelian; therefore, by a result of Amayo and Stewart (see [11]), every ideal of L is finitely generated. Now suppose I has class $c > 1$. Then, by the induction hypothesis, I/I^c is finitely generated as an ideal of L/I^c; in other words, there exists a finite-dimensional subspace U of I such that

\[I = \sum_{k \geq 0} [U, L, \ldots, L]_k + I^c. \]

Because $I^{c+1} = 0$, it follows that I^c is contained in the ideal of L generated by U. Thus I is generated by U, as required. \qed

Henceforth, L is a fixed finitely generated Lie algebra containing a nilpotent ideal I of class c and finite codimension n in L. Let V be a vector space complement of I in L with basis $\{e_1, \ldots, e_n\}$. For each pair i, j, write $[e_i, e_j] = x_{ij} + v_{ij}$, where $x_{ij} \in I$ and $v_{ij} \in V$. By the previous lemma, there exists a finite generating set $\{x_1, \ldots, x_m\}$ of I that contains each of the x_{ij}. Let U be the subspace of I spanned by $\{x_1, \ldots, x_m\}$ and set $W = U + V$.

Lemma 2. The subspace W generates L as a Lie algebra.
Lemma 3. Let show that \(I \) modulo \(k \) in the generating set \(\{U, L, \ldots, L\} \). But \(x \) will be straightened after a finite series of such transpositions, the lemma is proved.

Lemma 4. Let \(W^{(k)} \) denote the subspace of \(L \) spanned by all monomials of degree at most \(k \) in the generating set \(\{x_1, \ldots, x_m, e_1, \ldots, e_n\} \) of \(L \). We shall call any monomial of the form

\[
[x_{i(1)} e_{j(1,1)}, \ldots, e_{j(1,s_1)}, x_{i(2)} e_{j(2,1)}, \ldots, e_{j(2,s_2)}, \ldots, x_{i(t)} e_{j(t,1)}, \ldots, e_{j(t,s_t)}]
\]

straight if we have \(j(r,1) \leq \cdots \leq j(r,s_r) \) for each \(1 \leq r \leq t \). Finally, we shall denote by \(I_k \) the subspace of \(I \) spanned by all straight monomials of total degree at most \(k \).

Lemma 3. \(W^{(k)} \subseteq I_k + V \) for each \(k \geq 1 \).

Proof. Let \(\mu \) be any monomial of degree \(r \leq k \) in the \(x_i \)'s and \(e_j \)'s. We shall use induction on \(r \) to prove \(\mu \in I_k + V \). The case \(r = 1 \) is trivial. Suppose then that \(r > 1 \) and that \(\mu \) is not straight. Then \(\mu \) begins (on the left) with a monomial of the form \(\mu_1 = [\nu, e_a, e_b] \) where \(a < b \). By the Jacobi identity we see that

\[
\mu_1 = [\nu, e_a, e_b] + [e_a, e_b, \nu] = [\nu, e_a, e_b] - [\nu, x_{ab} + v_{ab}].
\]

But \(x_{ab} \) is one of the \(x_i \)'s, and \(v_{ab} \) is a linear combination of the \(e_j \)'s. Hence, \(\mu_1 \) is congruent to a ‘straighter’ monomial modulo a linear combination of monomials of lesser degree. Appealing to the induction hypothesis, it follows that \(\mu \) is congruent modulo \(I_k + V \) to a straighter monomial of the same degree \(r \). Because any monomial will be straightened after a finite series of such transpositions, the lemma is proved.

We are now ready to complete the proof of our theorem.

Lemma 4. The GK-dimension of \(L \) is at most \(cn \).

Proof. A simple counting argument followed by crude estimates shows that the number of straight monomials of degree \(t \) in the \(x_i \)'s and total degree \(r \) is

\[
m^t \sum_{r_1 + \cdots + r_t = r} \prod_{i=1}^t \binom{r_i + n - 1}{n - 1} \leq m^t r^{tn-1},
\]

and thus

\[
dim(I_k) \leq \sum_{r=1}^k \sum_{t=1}^c m^t r^{tn-1} \leq cm^c k^{cn}.
\]

It now follows from the previous lemma that \(\dim(W^{(k)}) \leq cm^c k^{cn} + n \), for each \(k \geq 1 \). Therefore, \(\text{GK-dim}(L) = \lim_{k \to \infty} \log_k \dim(W^{(k)}) \leq cn \).
3. A critical example

To illustrate that our upper bound is best possible, we adapt Shmelkin’s construction of a verbal wreath product (see [2], for example). For each finite-dimensional Lie algebra L with basis $\{e_1, \ldots, e_n\}$ consider the free right L-module M with generators $\{x_1, \ldots, x_c\}$. Then

$$M_0 = \{x_i e_1^{a_1} \cdots e_n^{a_n} \mid a_j \geq 0, \ 1 \leq i \leq c\}$$

is a basis for M. Next consider the free Lie algebra N in N_c on the set of generators M_0. One can make N into a right L-module via $[n_1, n_2]g = [n_1 g, n_2] + [n_1, n_2 g]$, $n_1, n_2 \in N$, $g \in L$. The semidirect product $N + L$ is spanned by $\{e_1, \ldots, e_n\}$ together with the set of monomials of degree at most c in the generating set M_0. Furthermore, monomials

$$[x_1 e_1^{a_1} \cdots e_n^{a_n}, x_2 e_1^{b_1} \cdots e_n^{b_n}, \ldots, x_c e_1^{c_1} \cdots e_n^{c_n}]$$

are linearly independent. The number of such monomials of degree at least $c + 1$ and at most k is

$$\sum_{r=c+1}^{k} \frac{(r - c + cn - 1)}{cn - 1} \geq \sum_{r=c+1}^{k} \frac{(r - c)^{cn-1}}{(cn-1)!} \geq \frac{(k - c)^{cn}}{(cn)!}.$$

It follows that $\text{GK-dim}(N + L) \geq cn$. Consequently, $\text{GK-dim}(N + L) = cn$ according to our Theorem.

References

Department of Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7

E-mail address: dmurray@uwo.ca

Department of Mathematics, The University of Western Ontario, London, Ontario, Canada N6A 5B7

E-mail address: husefi@uwo.ca