Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On D. Peterson's comparison formula for Gromov-Witten invariants of $G/P$


Author: Christopher T. Woodward
Journal: Proc. Amer. Math. Soc. 133 (2005), 1601-1609
MSC (2000): Primary 14L30, 14L24, 05Exx
DOI: https://doi.org/10.1090/S0002-9939-05-07709-9
Published electronically: January 21, 2005
MathSciNet review: 2120266
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a formula of Dale Peterson comparing Gromov-Witten (GW) invariants of $G/P$ to those of $G/B$ using canonical reductions of bundles.


References [Enhancements On Off] (What's this?)

  • 1. M. F. Atiyah and R. Bott. The Yang-Mills equations over Riemann surfaces. Phil. Trans. Roy. Soc. London Ser. A, 308:523-615, 1982. MR 0702806 (85k:14006)
  • 2. A. Bertram. Quantum Schubert calculus. Adv. Math., 128:289-305, 1997. MR 1454400 (98j:14067)
  • 3. A. Bertram, I. Ciocan-Fontanine, and W. Fulton. Quantum multiplication of Schur polynomials. J. Algebra, 219(2):728-746, 1999. MR 1706853 (2000k:14042)
  • 4. I. Ciocan-Fontanine. On quantum cohomology rings of partial flag varieties. Duke Math. J., 98(3):485-524, 1999. MR 1695799 (2000d:14058)
  • 5. Sergey Fomin, Sergei Gelfand, and Alexander Postnikov. Quantum Schubert polynomials. J. Amer. Math. Soc., 10(3):565-596, 1997. MR 1431829 (98d:14063)
  • 6. W. Fulton and R. Pandharipande. Notes on stable maps and quantum cohomology. In Algebraic geometry--Santa Cruz 1995, pages 45-96. Amer. Math. Soc., Providence, RI, 1997. MR 1492534 (98m:14025)
  • 7. W. Fulton and C. Woodward. On the quantum products of Schubert classes. J. Alg. Geom., 13(4):641-661, 2004. MR 2072765
  • 8. A. Grothendieck. Sur la classification des fibrés holomorphes sur la sphère de Riemann. Amer. J. Math., 79:121-138, 1957. MR 0087176 (19:315b)
  • 9. J. E. Humphreys. Reflection groups and Coxeter groups. Cambridge University Press, Cambridge, 1990. MR 1066460 (92h:20002)
  • 10. B. Kim and R. Pandharipande. The connectedness of the moduli space of maps to homogeneous spaces. In Symplectic geometry and mirror symmetry (Seoul, 2000), pages 187-201. World Sci. Publishing, River Edge, NJ, 2001. MR 1882330 (2002k:14021)
  • 11. A. Kresch and H. Tamvakis. Quantum cohomology of orthogonal Grassmannians. Compositio Math. 140:482-500, 2004. MR 2027200
  • 12. Andrew Kresch and Harry Tamvakis. Quantum cohomology of the Lagrangian Grassmannian. J. Algebraic Geom., 12(4):777-810, 2003. MR 1993764 (2004h:14063)
  • 13. A.-L. Mare. Polynomial representatives of Schubert classes in $QH\sp *(G/B)$. Math. Res. Lett., 9(5-6):757-769, 2002. MR 1906076 (2003m:14089)
  • 14. D. Peterson. Lectures on quantum cohomology of G/P. M.I.T., 1997.
  • 15. A. Postnikov. Affine approach to quantum Schubert calculus. math.CO/0205165.
  • 16. A. Ramanathan. Moduli for principal bundles over algebraic curves. I. Proc. Indian Acad. Sci. Math. Sci., 106(3):301-328, 1996. MR 1420170 (98b:14009a)
  • 17. C. Teleman and C. Woodward. Parabolic bundles, products of conjugacy classes and Gromov-Witten invariants. Ann. Inst. Fourier (Grenoble), 53(3):713-748, 2003. MR 2008438 (2004g:14053)
  • 18. J. F. Thomsen. Irreducibility of $\overline{{M}}\sb {0,n}({G}/{P},\beta)$. Internat. J. Math., 9(3):367-376, 1998. MR 1625369 (99g:14032)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14L30, 14L24, 05Exx

Retrieve articles in all journals with MSC (2000): 14L30, 14L24, 05Exx


Additional Information

Christopher T. Woodward
Affiliation: Department of Mathematics-Hill Center, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey 08854-8019
Email: ctw@math.rutgers.edu

DOI: https://doi.org/10.1090/S0002-9939-05-07709-9
Keywords: Quantum cohomology, Gromov-Witten invariants, Schubert calculus
Received by editor(s): July 23, 2002
Received by editor(s) in revised form: February 23, 2004
Published electronically: January 21, 2005
Additional Notes: This research was partially supported by NSF grants DMS9971357 and DMS0093647
Communicated by: Michael Stillman
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society