Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A general functional equation and its stability


Author: John A. Baker
Journal: Proc. Amer. Math. Soc. 133 (2005), 1657-1664
MSC (2000): Primary 39B72, 39B52; Secondary 39B05
DOI: https://doi.org/10.1090/S0002-9939-05-07841-X
Published electronically: January 13, 2005
MathSciNet review: 2120259
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that $V$ and $B$ are vector spaces over $\mathbb{Q}, \mathbb{R}$ or $\mathbb{C}$ and $\alpha_0,\beta_0,\dots,\alpha_m,\beta_m$ are scalar such that $\alpha_j\beta_k-\alpha_k\beta_j\neq 0$ whenever $0\leq j<k\leq m.$ We prove that if $f_k:V\rightarrow B$ for $0\leq k\leq m$ and

\begin{displaymath}(*)\quad\qquad\qquad\qquad \sum^m_{k=0} f_k(\alpha_kx+\beta_ky)=0\quad \text{for all} x,y\in V, \qquad\quad\qquad\qquad\quad \end{displaymath}

then each $f_k$ is a ``generalized'' polynomial map of ``degree'' at most $m-1.$

In case $V=\mathbb{R}^n$ and $B=\mathbb{C}$ we show that if some $f_k$is bounded on a set of positive inner Lebesgue measure, then it is a genuine polynomial function.

Our main aim is to establish the stability of $(*)$ (in the sense of Ulam) in case $B$ is a Banach space.

We also solve a distributional analogue of $(*)$ and prove a mean value theorem concerning harmonic functions in two real variables.


References [Enhancements On Off] (What's this?)

  • 1. Michael Albert and John A. Baker, Functions with bounded $n$th differences, Ann. Polon. Math. 43 (1983), 93-103. MR 0727892 (85m:39001)
  • 2. John A. Baker, On a functional equation of Aczél and Chung, Aeq. Math. 46 (1993), 99-111. MR 1220725 (95e:39004)
  • 3. John A. Baker, Mean value theorems via spectral synthesis, J. Math. Anal. Appl. 193 (1995), 306-317. MR 1338515 (96k:39028)
  • 4. Z. Ciesielski, Some properties of convex functions of higher orders, Ann. Polon. Math. 7 (1959), 1-7. MR 0109202 (22:89)
  • 5. D.Z. Djokovic, A representation theorem for $(X_1-1)(X_2-1)\cdots(X_n-1)$ and its applications, Ann. Polon. Math. 22 (1969), 189-198. MR 0265798 (42:707)
  • 6. G.L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 143-190.MR 1336866 (96i:39033)
  • 7. M. Fréchet, Pri la funkcia equacio $f(x+y)=f(x)+f(y)$, Enseignement Math. 15 (1913), 390-393.
  • 8. Lars Hormander, The analysis of linear partial differential operators. I, Second Edition, Springer-Verlag, Berlin, 1990.MR 1065993 (91m:35001a)
  • 9. D.H. Hyers, Transformations with bounded $n$-th differences, Pacific J. Math. 11 (1961), 591-602. MR 0132401 (24:A2246)
  • 10. J.H.B. Kemperman, A general functional equation, Trans. Amer. Math. Soc. 86 (1957), 28-56. MR 0094610 (20:1123)
  • 11. J.H.B. Kemperman, On the regularity of generalized convex functions, Trans. Amer. Math. Soc. 135 (1969), 69-93.MR 0265531 (42:440); MR 0232900 (38:1223)
  • 12. S. Mazur and W. Orlicz, Grundlegende Eigenschaften der Polynomischen Operationen, Erst Mitteilung, Studia Math. 5 (1934), 50-68.
  • 13. S. Mazur and W. Orlicz, Grundlegende Eigenschaften der Polynomischen Operationen, Zweite Mitteilung, ibidem 5 (1934), 179-189.
  • 14. J.L. Walsh, A mean value theorem for polynomials and harmonic polynomials, Bull. Amer. Math. Soc. (1936), 923-930.
  • 15. H. Whitney, On functions with bounded $n$-th differences, J. Math. Pures Appl. (9) 36 (1957), 67-95. MR 0084611 (18:889f)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 39B72, 39B52, 39B05

Retrieve articles in all journals with MSC (2000): 39B72, 39B52, 39B05


Additional Information

John A. Baker
Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
Email: jabaker@math.uwaterloo.ca

DOI: https://doi.org/10.1090/S0002-9939-05-07841-X
Keywords: Functional equation, stability
Received by editor(s): April 25, 2003
Published electronically: January 13, 2005
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society