AN EXTREMAL FUNCTION FOR THE CHANG-MARSHALL INEQUALITY OVER THE BEURLING FUNCTIONS

VALENTIN V. ANDREEV

(Communicated by Juha M. Heinonen)

Abstract. S.-Y. A. Chang and D. E. Marshall showed that the functional \(\Lambda(f) = \frac{1}{2\pi} \int_0^{2\pi} \exp(|f(e^{i\theta})|^2) d\theta \) is bounded on the unit ball \(B \) of the space \(D \) of analytic functions in the unit disk with \(f(0) = 0 \) and Dirichlet integral not exceeding one. Andreev and Matheson conjectured that the identity function \(f(z) = z \) is a global maximum on \(B \) for the functional \(\Lambda \). We prove that \(\Lambda \) attains its maximum at \(f(z) = z \) over a subset of \(B \) determined by kernel functions, which provides a positive answer to a conjecture of Cima and Matheson.

1. Introduction

Let \(D \) be the Dirichlet space of functions \(f \) analytic on the unit disk \(D \), with \(f(0) = 0 \) and a finite Dirichlet integral

\[
\|f\|_D^2 = \frac{1}{\pi} \int \int_D |f'(z)|^2 \, dx \, dy.
\]

It is well known that \(D \) is a Hilbert space with inner product

\[
\langle f, g \rangle_D = \frac{1}{\pi} \int \int_D f'(z) \overline{g'(z)} \, dx \, dy.
\]

Let \(B = \{ f \in D : \|f\|_D \leq 1 \} \) be its closed unit ball.

We shall be concerned with functionals \(\Lambda_{\Phi} \) on \(B \) defined by

\[
\Lambda_{\Phi}(f) = \frac{1}{\pi} \int_0^{2\pi} \Phi(|f(e^{i\theta})|) \, d\theta,
\]

for \(f \in B \) and \(\Phi : (-\infty, \infty) \to \mathbb{R} \) being a continuous convex nondecreasing function. A function \(f \) is a maximum for \(\Lambda_{\Phi} \) if \(f \in B \) and \(\Lambda_{\Phi}(f) \geq \Lambda_{\Phi}(g) \) for all \(g \in B \).

Chang and Marshall \(\Phi \) proved that if \(\Phi_{\alpha}(t) = e^{\alpha t^2} \) for \(\alpha > 0 \), then \(\Lambda_{\Phi_{\alpha}} \) is bounded on \(B \) if and only if \(\alpha \leq 1 \). In their proof they compared functions in \(B \) to the Beurling functions

\[
B_{\alpha}(z) = \frac{\log \frac{1}{1 - |z|^2}}{\sqrt{\log \frac{1}{1 - |\alpha|^2}}},
\]

Received by the editors August 1, 2003 and, in revised form, March 12, 2004.

2000 Mathematics Subject Classification. Primary 30H05; Secondary 30A10, 30D99, 49K99.

Key words and phrases. Dirichlet space, Chang-Marshall inequality, Baernstein star-function, extremal functions.
for \(a \in \mathbb{D} \setminus \{0\} \), where the branch of the logarithm is chosen so that \(B_a(a) \) is real. The denominator assures that \(\|B_a\|_D = 1 \). Up to a normalizing factor, the \(B_a \) are the kernel functions for \(D \). We shall denote by \(B_0 \) the set of all Beurling functions and by \(\overline{B}_0 \) its closed convex hull.

A shorter proof of this fact has since been found by Marshall [9]. A significantly more general and stronger inequality has been found by Essén [7]. Andreev and Matheson [1] showed that the identity function \(f(z) = z \) is a local maximum for \(\Lambda \Phi \) on \(B \) and conjectured that it is also a global maximum. Cima and Matheson [4] showed that the identity function is a local maximum on the set \(B_0 \) and that the functional \(\Lambda \Phi \) attains its maximum on \(\overline{B}_0 \). On the other hand, they showed that \(\Lambda \Phi \), when restricted to \(B \), is not weakly continuous at 0, and thus it is an open question whether there exists a global maximum for \(\Lambda \Phi \) on \(B_0 \). Matheson and Pruss [10] studied the regularity of the extremal functions. We refer the reader to their paper for an excellent discussion of this and other related problems and for a list of open problems.

Our principle result is:

Theorem 1.1. The inequality

\[
\Lambda \Phi_1(f) < \Lambda \Phi_1(z)
\]

holds true for all \(f \in \overline{B}_0 \).

Our result proves Conjecture 1 of Cima and Matheson in [4].

2. **Proof of Theorem 1.1**

It is natural to set \(B_0(z) = z \) (see [4]). A function \(\Phi(x) \) continuous on \(-\infty < x < \infty \) is said to be convex if \(\Phi((x + y)/2) \leq \frac{\Phi(x) + \Phi(y)}{2} \), and strictly convex if strict inequality holds whenever \(x \neq y \). Theorem 1.1 is a consequence of the following result.

Theorem 2.1. Let \(\Phi(x) \) be a convex nondecreasing function on \(-\infty < x < \infty \). For all \(a_0, a \in \mathbb{D} \setminus \{0\} \) such that \(0 \leq |a_0| < |a| < 1 \), we have

\[
\int_0^{2\pi} \Phi(\log |B_a(re^{i\theta})|)d\theta \leq \int_0^{2\pi} \Phi(\log |B_{a_0}(re^{i\theta})|)d\theta,
\]

\(0 < r < 1 \). If \(\Phi \) is strictly convex, then the inequality is strict for all \(r \).

Proof. Our proof is based on the deep results of Albert Baernstein [2, Theorem 1] on integral means of univalent functions (see also Chapter 7 of Duren’s book [5]). In particular, we need the following proposition [2, Proposition 3].

Proposition 2.2. For \(g, h \in L^1(-\pi, \pi) \), the following statements are equivalent.

(a) For each function \(\Phi(s) \) convex and nondecreasing on \(-\infty < s < \infty \),

\[
\int_{-\pi}^{\pi} \Phi(g(x))dx \leq \int_{-\pi}^{\pi} \Phi(h(x))dx.
\]

(b) For each \(t \in \mathbb{R} \),

\[
\int_{-\pi}^{\pi} [g(x) - t]^+dx \leq \int_{-\pi}^{\pi} [h(x) - t]^+dx.
\]

(c) \(g^*(\theta) \leq h^*(\theta), \ 0 \leq \theta \leq \pi. \)
Here for each $r \in (r_1, r_2)$ and $u(re^{i\theta}) \in L^1(0, 2\pi)$ the *Baernstein star-function* of u is defined as

$$u^*(re^{i\theta}) = \sup_{|E|=2\pi} \int_E u(re^{i\theta}) \, dt,$$

$0 \leq \theta \leq \pi$, where $|E|$ denotes the Lebesgue measure of the set $E \subset [-\pi, \pi]$.

In view of Proposition 2.2, we want first to show that

$$\int_{-\pi}^{\pi} \log^+ \left(\frac{|B_a(re^{i\theta})|}{\rho} \right) d\theta \leq \int_{-\pi}^{\pi} \log^+ \left(\frac{|B_a(0)|}{\rho} \right) d\theta,$$

$0 < r < 1$, for each $\rho > 0$ and all a and a_0 such that $0 \leq |a_0| < |a| < 1$. Notice that

$$\int_{-\pi}^{\pi} \log^+ \left(\frac{|B_a(re^{i\theta})|}{\rho} \right) d\theta = \int_{-\pi}^{\pi} \log^+ \left(\frac{|B_{a_0}(re^{i\theta})|}{\rho} \right) d\theta,$$

whenever $|a'| = |a''|$. Hence we may assume from now on that $0 \leq a_0 < a < 0$.

We can apply Jensen’s theorem to obtain

$$\int_{-\pi}^{\pi} \log^+ \left(\frac{|B_a(re^{i\theta})|}{\rho} \right) d\theta = \int_{-\pi}^{\pi} N(r, re^{i\theta}) d\phi,$$

since $B_a(0) = 0$. It is easy to see that B_a is a univalent function in the unit disk D, $B_a(0) = 0$ and $B_a'(0) = a/A$, where $A = \{\log[1/(1-|a|^2)]\}^{1/2}$, for each $0 < a < 1$, with a continuous extension to the closed unit disk \overline{D}, and if $\alpha = re^{i\phi} \neq 0$ is in the range D_a of B_a, then

$$N(r, \alpha) = \int_0^r \frac{n(t, \alpha)}{t} dt = \log^+ \left(\frac{r}{|\alpha|} \right) = \log^+ \left(\frac{r}{|B_a^{-1}(\alpha)|} \right),$$

$0 < r < 1$. Let $u_a(\zeta) = -\log |B_a^{-1}(\zeta)|$ be the Green’s function of D_a with pole at 0. Extend it to a continuous function in the punctured plane by setting $u_a(\zeta) = 0$, $\zeta \notin D_a$. The formula (2.3) takes the form

$$N(r, \zeta) = [u_a(\zeta) + \log r]^+, \quad 0 < r < 1, \quad \text{for arbitrary } \zeta, \quad \text{and equation (2.3) becomes}$$

$$\int_{-\pi}^{\pi} \log^+ \left(\frac{|B_a(re^{i\theta})|}{\rho} \right) d\theta = \int_{-\pi}^{\pi} [u_a(re^{i\theta}) + \log r]^+ d\phi.$$

Let $u_{a_0}(\zeta) = -\log |B_{a_0}^{-1}(\zeta)|$ for $\zeta \in D_{a_0}$, and let $u_{a_0}(\zeta) = 0$ elsewhere. In view of (2.6), the inequality (2.3) can be recast in the form

$$\int_{-\pi}^{\pi} [u_a(re^{i\phi}) + \log r]^+ d\phi \leq \int_{-\pi}^{\pi} [u_{a_0}(re^{i\phi}) + \log r]^+ d\phi,$$

$0 < r < 1, 0 < \rho < \infty$. By Proposition 2.2, this is implied by the inequality

$$u_a^*(\rho e^{i\phi}) \leq u_{a_0}^*(\rho e^{i\phi}),$$

$0 < \rho < \infty, 0 \leq \phi \leq \pi$.

The function $u(\zeta)$ is continuous in $0 < |\zeta| < \infty$, it is positive and harmonic in D_a, and identically zero outside D_a. Thus it is subharmonic in $0 < |\zeta| < \infty$. Hence by [2, Theorem A] and the definition (2.2) of the star-function, u_a^* is subharmonic in the open upper half-plane and continuous in the closed upper half-plane, except at the origin.
Since $B_a^{-1}(\zeta) = (1 - e^{-A\zeta})/a$, then, near the origin, u_a has the form

$$u_a(\zeta) = -\log |\zeta| - \log \frac{A}{a} + u_{1a}(\zeta),$$

where u_{1a} is harmonic and $u_{1a}(0) = 0$. Thus

$$u_a^*(pe^{i\phi}) + 2\phi \log \rho \to -2\phi \log \frac{A}{a}$$

as $\rho \to 0$ for $0 \leq \phi \leq \pi$. Similarly, near the origin, u_{a_0} has the form

$$u_{a_0}(\zeta) = -\log |\zeta| - \log \frac{A_0}{a_0} + u_{1a_0}(\zeta),$$

where u_{1a_0} is harmonic and $u_{1a_0}(0) = 0$. Thus

$$u_{a_0}^*(pe^{i\phi}) + 2\phi \log \rho \to -2\phi \log \frac{A_0}{a_0}$$

as $\rho \to 0$ for $0 \leq \phi \leq \pi$. It follows that

$$|u_a^*(pe^{i\phi}) - u_{a_0}^*(pe^{i\phi})| \to -2\phi \log \frac{a_0 A}{AA_0}$$

as $\rho \to 0$ for $0 \leq \phi \leq \pi$. It is easy to see that $a_0 A/(a A_0) > 1$ for $a_0 < a$ and hence that $-2\pi \log \frac{a_0 A}{AA_0} \leq -2\phi \log \frac{a_0 A}{AA_0} \leq 0$ for $a_0 < a$.

Hence $(u_a^* - u_{a_0}^*)$ is subharmonic in the upper half-plane and continuous in its closure except at the origin, where it has a bounded discontinuity: for $\phi = 0$,

$$\lim_{\rho \to 0} (u_a^* (\rho) - u_{a_0}^* (\rho)) = 0,$$

and for $\phi = \pi$,

$$\lim_{\rho \to 0} (u_a^*(-\rho) - u_{a_0}^*(-\rho)) = -2\pi \log \frac{a_0 A}{AA_0}.$$

We want to show that $(u_a^* - u_{a_0}^*) < 0$ in the open upper half-plane. Since $u_a^* - u_{a_0}^*$ is discontinuous at the origin, we cannot apply the maximum principle for subharmonic functions to $u_a^* - u_{a_0}^*$ at this point. The proof of the inequality $(u_a^* - u_{a_0}^*) < 0$ for $3\zeta > 0$ will be based on the following four steps (a)–(d).

(a) On the positive real axis, by definition, $u_a^*(\zeta) = v^*(\zeta) = 0$ for $\zeta > 0$.

(b) Next let d_a be the distance from 0 to the complement of D_a. It is obvious that $\Re(1 - ae^{i\theta})^{-1} > 0$. Since the branch of the logarithm was chosen so that $B_a^*(a)$ is real, then

$$|B_a^*(e^{i\theta})| = \frac{1}{A} \left\{ \log \frac{1}{|1 - a e^{i\theta}|} \right\}^2 + \left| \arg \frac{1}{1 - a e^{i\theta}} \right|^2)^{1/2}.$$

Since $\max |1 - ae^{i\theta}| = |1 - ae^{i\pi}| = 1 + a$ and $|\arg \frac{1}{1 - ae^{i\theta}}|^2 = 0$, it is easy to see that

$$-\frac{1}{A} \log \frac{1}{1 + a} \leq |B_a^*(e^{i\theta})| \leq \frac{1}{A} \log \frac{1}{1 - a}$$

for $0 < a < 1$. Thus $d_a = -\frac{1}{A} \log \frac{1}{1 + a}$. We want to show that d_a is a decreasing function of a for $0 < a < 1$. It is clear that $d_a \to 1$ as $a \to 0$. Let

$$f(a) = \frac{\log (1 + a)}{A}.$$

Then

$$f'(a) = -\frac{[(1 - a) \log (1 - a) + \log (1 + a)]}{(1 - a^2) A^3}.$$
Let

\[f_1(a) = (1 - a) \log(1 - a) + \log(1 + a). \]

An easy computation shows that \(f_1'(a) > 0 \) for \(0 < a < 1 \). Thus \(f_1 \) is an increasing function of \(a \), and it follows that \(f_1(a) > 0 \) for \(0 < a < 1 \) since \(f_1'(0) = 0 \). Therefore \(f_1 \) is an increasing function of \(a \) for \(0 < a < 1 \) and \(f_1(a) > 0 \) since \(f_1(0) = 0 \). Finally, this implies that \(f'(a) < 0 \) for \(0 < a < 1 \), and thus \(f \) is a decreasing function of \(a \). Therefore \(d_{a_0} > d_a \) for all \(a, a_0 < a < 1 \).

In the disk \(|\zeta| < d_a\), \(u_\phi(\zeta) \) has the form (2.8), where \(u_{1a} \) is harmonic in \(|\zeta| < d_a\) and \(u_{1a}(0) = 0 \). Thus

\[u_\phi^*(\rho e^{i\pi}) = -2\pi \log \frac{1}{\rho} - 2\pi \log \frac{A}{a} \]

and, similarly,

\[u_{a_0}^*(\rho e^{i\pi}) = -2\pi \log \frac{1}{\rho} - 2\pi \log \frac{A_0}{a_0} \]

for \(0 < \rho < d_a \). Hence \(u_\phi^*(\zeta) < u_{a_0}^*(\zeta) \) for \(-d_a < \zeta < 0\).

(c) Since \(u_{1a}(\zeta) \) and \(u_{1a_0}(\zeta) \) are harmonic in \(|\zeta| < d_a\) and \(u_{1a}(0) = u_{1a_0}(0) = 0 \), then for every \(\epsilon > 0 \) there is a \(\rho_0, \rho_0 = |\zeta| < d_a \), such that \(|u_{1a}(\zeta)| < \epsilon/2 \) and \(|u_{1a_0}(\zeta)| < \epsilon/2 \) for all \(\zeta, |\zeta| \leq \rho_0 \). Thus

\[
\begin{align*}
\sup_{|E|=2\phi} \int_E u_{1a}(\rho e^{i\theta}) dt &= -2\phi \log \rho - 2\phi \log \frac{A}{a} + \sup_{|E|=2\phi} \int_E u_{1a}(\rho e^{i\theta}) dt \\
&\leq -2\phi \log \rho - 2\phi \log \frac{A}{a} + \phi \epsilon
\end{align*}
\]

and

\[
\begin{align*}
\sup_{|E|=2\phi} \int_E u_{a_0}(\rho e^{i\theta}) dt &= -2\phi \log \rho - 2\phi \log \frac{A_0}{a_0} + \sup_{|E|=2\phi} \int_E u_{a_0}(\rho e^{i\theta}) dt \\
&\geq -2\phi \log \rho - 2\phi \log \frac{A_0}{a_0} - \phi \epsilon
\end{align*}
\]

for \(0 < \rho \leq \rho_0 \) and \(0 < \phi < \pi \). Now choose \(\epsilon \) such that \(\epsilon < \log(Aa_0/aA_0) \). Then

\[
u_\phi^*(\rho e^{i\phi}) - u_{a_0}^*(\rho e^{i\phi}) \leq -2\phi \log \frac{Aa_0}{aA_0} + 2\phi \epsilon < 0
\]

for all \(0 < \rho \leq \rho_0 \) and \(0 < \phi < \pi \). Hence \(u_\phi^*(\zeta) < u_{a_0}^*(\zeta) \) for \(|\zeta| \leq \rho_0 < d_a \) and \(0 < \phi < \pi \).

(d) To establish the inequality on \(-\infty < \zeta < -d_a \), we fix \(\epsilon > 0 \) and consider the function

\[Q(\zeta) = u_{1a}^*(\zeta) - u_{a_0}^*(\zeta) - \epsilon \phi, \]

\(\zeta = \rho e^{i\phi} \), which is subharmonic in \(A = \{\zeta : \rho_0 < |\zeta|, 0 < 3\zeta\} \) and continuous in the closure of \(A \). Let \(M \) be the maximum of \(Q(\zeta) \) in \(\overline{A} \). Then \(M > 0 \) and, according to the maximum principle for subharmonic functions, the maximum is attained somewhere on the boundary of \(A \). Suppose \(M > 0 \). Since \(u_\phi^*(\zeta) \leq u_{a_0}^*(\zeta) \) on the set \(\{\zeta : -d_a \leq \zeta \leq \rho_0\} \cup \{\zeta : |\zeta| = \rho_0, 3\zeta > 0\} \cup \{\zeta : \rho_0 \leq \zeta < \infty\} \), there
is some point $-\zeta_1 = -\rho_1$ for which $-\infty < \zeta_1 < -d_a$ and $Q(\zeta_1) = M$. Let $G_\alpha(\phi)$ denote the symmetric decreasing rearrangement of $u_a(\rho_1 e^{i\phi})$. Then
\[\frac{\partial u^*_a(\rho_1 e^{i\phi})}{\partial \phi} = 2G_\alpha(\phi) \]
for $0 \leq \phi \leq \pi$ by [2, Proposition 2]. But because $\rho_1 > d_a$, there is some point on the circle $|\zeta| = \rho_1$ that lies outside D_a, so
\[G_\alpha(\pi) = \inf_{0 \leq \phi \leq \pi} u_a(\rho_1 e^{i\phi}) = 0. \]
Applying the same argument to u_{a_0} we obtain
\[\frac{\partial u^*_{a_0}(\rho_1 e^{i\phi})}{\partial \phi} = 2G_{a_0}(\phi) \]
for $0 \leq \phi \leq \pi$. If $d_a < \rho_1 \leq d_{a_0}$, then
\[G_{a_0}(\phi) = \inf_{0 \leq \phi < \pi} \{ t : \lambda(t) \leq 2\phi \}, \]
where λ is the distribution function of u_{a_0}, $\lambda(t) = |\{ \phi : u_{a_0}(\rho_0 e^{i\phi}) > t \}|$, and
\[G_{a_0}(\pi) = \lim_{\phi \to \pi^-} G_{a_0}(\phi). \]
Hence $G_{a_0}(\pi) \geq 0$ if $d_a < \rho_1 \leq d_{a_0}$. If $d_{a_0} < \rho_1$, there is some point on the circle $|\zeta| = \rho_1$ that lies outside D_{a_0}, so
\[G_{a_0}(\pi) = \inf_{0 \leq \phi \leq \pi} u_{a_0}(\rho_1 e^{i\phi}) = 0. \]
Therefore
\[\frac{\partial Q}{\partial \phi}(\zeta_1) \leq -\epsilon < 0, \]
which contradicts the assumption that $Q(\zeta)$ has a relative maximum at ζ_1. Hence $M = 0$ and
\[u^*_a(\zeta) \leq u^*_{a_0}(\zeta) + \epsilon \phi \leq u^*_{a_0}(\zeta) + \epsilon \pi \]
for $\zeta \in \mathcal{A}$. Letting $\epsilon \to 0$ we obtain that
\[u^*_a(\rho e^{i\phi}) \leq u^*_{a_0}(\rho e^{i\phi}) \]
for $\zeta \in \mathcal{A}$.

We are in a position now to prove that $u^*_a(\zeta) < u^*_{a_0}(\zeta)$ in the open upper half-plane. Combining (a)–(d) we obtain (2.7). Furthermore, $u^*_a(\zeta) < u^*_{a_0}(\zeta)$ on the set $\{ \zeta : -d_a \leq \zeta \leq \rho_0 \} \cup \{ \zeta : |\zeta| = \rho_0, \Im \zeta > 0 \}$ by (b) and (c). Hence $u^*_a - u^*_{a_0}$ is a subharmonic function on \mathcal{A} that is not identically equal to zero there and, by the maximum principle, this implies that $u^*_a(\zeta) < u^*_{a_0}(\zeta)$ everywhere in \mathcal{A}. Also, $u^*_a(\zeta) < u^*_{a_0}(\zeta)$ for $\{ \zeta : 0 < |\zeta| \leq \rho_0 < d_a, 0 < \Im \zeta \}$ by (c). Therefore,
\[u^*_a(\zeta) < u^*_{a_0}(\zeta) \]
in the open upper half-plane.

It follows from Proposition 2.2 that
\[\int_0^{2\pi} \Phi(\log |B_a(re^{i\theta})|)d\theta \leq \int_0^{2\pi} \Phi(\log |B_{a_0}(re^{i\theta})|)d\theta \]
for all $0 \leq a_0 < a < 0$ and $0 < r < 1$. The proof of strict inequality in (2.9) is identical to the proof of strict inequality in Theorem 1 in [2, pp. 157-158] and will be omitted. This completes the proof of Theorem 2.1. \qed
Proof of Theorem 1.1. The choice $\Phi(x) = e^{2x}$ in (2.1) allows us to conclude that
$$\Lambda_{\Phi_1}(B_a(re^{i\theta})) < \Lambda_{\Phi_1}(B_{a_0}(re^{i\theta}))$$
for all $0 \leq a_0 < a < 0$ and $0 < r < 1$. Let
$$\|B_a(re^{i\theta})\|_p = \frac{1}{2\pi} \int_0^{2\pi} |B_a(re^{i\theta})|^p \, d\theta.$$
Since
$$\Lambda_{\Phi_1}(B_a(re^{i\theta})) = 1 + \sum_{n=1}^{\infty} \frac{\|B_a(re^{i\theta})\|_{2n}}{n!},$$
and, by Lemma 1 of [1], $B_a \in H^p$ for $0 < p < \infty$, we can choose a sequence $r_n \to 1$ as $n \to \infty$ for which the inequalities $\Lambda_{\Phi_1}(B_a(r_n e^{i\theta})) < \Lambda_{\Phi_1}(B_{a_0}(r_n e^{i\theta}))$ hold. Hence
$$\Lambda_{\Phi_1}(B_a(re^{i\theta})) \leq \Lambda_{\Phi_1}(B_{a_0}(re^{i\theta}))$$
for all $0 < r \leq 1$ by Hardy’s convexity theorem for integral means (see, e.g., [6, Theorem 1.5]).

It now remains to demonstrate that strict inequality holds true in Theorem 1.1. According to Theorem 2 of [4], B_0 is a local maximum on the set of Beurling functions. Thus there is an a_0, $0 < a_0$, such that
$$\Lambda_{\Phi_1}(B_a(e^{i\theta})) < \Lambda_{\Phi_1}(B_0(e^{i\theta}))$$
for $0 < a \leq a_0$. (James and Matheson [8] have informed the author that, using a numerical method, they have proved the last inequality for $0 < a < 1/2$.)

Finally, combine the last inequality with the fact that Λ_{Φ_1} is log-convex [4, p. 387] to complete the proof of Theorem 1.1.

It was pointed out in [1] that B_0 does not maximize the integral means over B. If we choose $\Phi(x) = e^{px}$, $0 < p < \infty$, in Theorem 2.1, we obtain that B_0 maximizes the integral means over B_0.

Corollary 2.3. The inequality
$$\frac{1}{2\pi} \int_0^{2\pi} |B_a(re^{i\theta})|^p \, d\theta \leq \frac{1}{2\pi} \int_0^{2\pi} |B_{a_0}(re^{i\theta})|^p \, d\theta$$
holds true for all $0 \leq |a_0| < |a| < 0$, $0 < r \leq 1$, and all $0 < p < \infty$.

It will be interesting to see if the approach in Theorem 2.1 can be extended to the univalent functions in D. The result of this paper provides further evidence in favor of a conjecture made in [1]:

Conjecture 1. Λ_{Φ_1} attains its maximum on B at B_0.

REFERENCES

8. Jason James, and Alec Matheson, *(in preparation)*.

Department of Mathematics, Lamar University, P. O. Box 10047, Beaumont, Texas 77710

E-mail address: andreev@math.lamar.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use