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THE HOMOLOGICAL DETERMINANT
OF QUANTUM GROUPS OF TYPE A

PHÙNG H `̂O HAI

(Communicated by Martin Lorenz)

Abstract. Let R be a Hecke symmetry depending algebraically on a param-
eter q ∈ C. We show that the homology of the Koszul complex associated
with R is one-dimensional when q is not a root of unity. A generator of this
homology group then induces the homological determinant of the quantum
group associated with R.

Introduction

Let V be a vector space over a field k and GL(V ) the general linear group. It
is well known that elements of GL(V ) act on the n-th homogeneous component
of the exterior algebra over V by means of the determinant. More precisely, let
x1, x2, . . . , xd be a basis of V . Then ∧d(V ) is one-dimensional and a non-zero
vector is x1∧x2∧ . . .∧xd. If g ∈ GL(V ) has the matrix A with respect to this
basis, then

g · (x1∧x2∧ . . .∧xd) = detA · x1∧x2∧ . . .∧xd.

Now let V be a vector superspace of dimension (r|s), r+s = d. The super group
GL(V ) is defined as follows. Let x1, x2, . . . , xd be a homogeneous basis of V , where
the parity of the first r elements is even and the parity of the rest is odd. Let zi

j

be the endomorphism that maps xi to xj and other basis elements to zero. We
consider zi

j as a generator with parity being the sum of those of xi and xj . The
super semi-group End(V ) is the spectrum of the super commutative algebra

M := k
〈{zi

j}1≤i,j≤d

〉
/(zi

jz
k
l = (−1)(̂i+ĵ)(k̂+l̂)zk

l z
i
j)

(where k〈{zi
j}1≤i,j≤d〉 denotes the free non-commutative algebra and î denotes the

parity of xi). Thus, for a super commutative algebra K, an endomorphism of
VK := V ⊗K is a K-point of M , i.e. an algebra homomorphism M −→ K.

The invertibility of a super matrix can be given in terms of the super determinant
or Berezinian, which was introduced by Berezin. Let K be a super commutative
algebra and Z be a K-point of End(V ). The matrix Z = (zi

j) has the following
form: Z = ( A B

C D ) where A,D are square matrices of dimension m×m and n× n,
respectively, whose entries’ parities are even, and B,D are matrices of types m×n
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and n×m, whose entries’ parities are odd. The super determinant of Z is defined
to be

BerZ = detT−1 det(A− CD−1B).

It is shown that the matrix Z is invertible iff its super determinant is and that
the super determinant is multiplicative. Thus, the invertible super matrix forms a
group GL(V ), which is an algebraic super-subgroup of End(V ). It is however not
clear why the definition of Ber is independent of the choice of bases (our basis is a
distinguished basis).

In [17] Manin suggested the following construction to define the super determi-
nant. Let V ∗ denote the vector space dual to V with the dual basis ξ1, ξ2, . . . , ξn,
ξi(xj) = δi

j . Manin introduced the following Koszul complex: its (k, l)-term is
given by Kk,l := ∧k ⊗ Sl

∗, where ∧n and Sn are the n-th homogeneous compo-
nents of the exterior and the symmetric tensor algebra over V . The differential
dk,l : Kk,l −→ Kk+1,l+1 is given by

dk,l(h⊗ φ) =
∑

i

hxi ⊗ ξi∧φ.

It is easy to check that dk,l is GL(V )-equivariant; hence the homology groups of this
complex are representations of GL(V ). On the other hand, one can show that this
complex is exact everywhere except at the term (m,n), where the homology group
is one-dimensional; thus, it defines a one-dimensional representation of GL(V ). It
turns out that elements of GL(V ) act on this representation by means of its super
determinant; in other words, the definition of the super determinant is basis free.

The quantum semigroup of type A is the “spectrum” of the bialgebra

E := k〈{zi
j}1≤i,j≤d〉/(Rij

uvz
u
kz

v
l = zi

tz
j
sR

ts
kl)

where R is a Hecke symmetry (see §1). The Hecke symmetry resembles the usual
flipping operator a⊗ b �−→ b⊗ a or a⊗ b �−→ (−1)âb̂b⊗ a (a, b are homogeneous) in
super symmetry.

In [5, 14], a Koszul complex is defined for R. For that, one first has to define the
quantum exterior and quantum symmetric tensors by means of certain projectors
on V ⊗n. It is still an open question whether this complex has the homology group
concentrated at a certain term and its dimension is one. Some efforts have been
made. Gurevich [5] showed this for even Hecke symmetries (i.e., those that induce
a finite-dimensional exterior algebra); Lyubashenko and Sudbery [14] showed this
for Hecke sums of an odd and an even Hecke symmetry.

In this paper, assuming that R depends algebraically on q, where q runs in C, we
give the affirmative answer to this question for an algebraically dense set of values
of q. Our tactic is first to use a new result of Deligne [1] to check the case q = 1.
Then using a standard argument we show that for a dense set of values of q, the
homology group of K has dimension less than that of the corresponding homology
groups when q = 1. In other words, for an algebraically dense subset of C, the
homology group has dimension at most 1. It remains to show the non-vanishing of
the homology.
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1. Hecke symmetries and the associated quantum groups

We work over an algebraically closed field k of characteristic zero. Let V be a
vector space over k of dimension d. Let R : V ⊗ V −→ V ⊗ V be an invertible
operator. R is called a Hecke symmetry if the following conditions are fulfilled:

• R1R2R1 = R2R1R2, where R1 := R⊗ idV , R2 := idV ⊗R,
• (R + 1)(R− q) = 0 for some q ∈ k.
• The half adjoint toR, R� : V ∗⊗V −→ V⊗V ∗, 〈R�(ξ⊗v), w〉 = 〈ξ, R(v⊗w)〉,

is invertible.
Throughout this work we will assume that q is not a root of unity other than
the unity itself. If q = 1, R is called vector symmetry. Vector symmetries were
introduced by Lyubashenko [13] and generalized to Hecke symmetries by Gurevich
[5].

Let us fix a basis x1, x2, . . . , xd of V . Then R can be given in terms of a matrix,
also denoted by R, R(xi ⊗ xj) = xk ⊗ xlR

kl
ij , where we adopt the convention of

summing over the indices that appear in both the lower and upper places. The
matrix R�kl

ij is given by R�kl
ij = Rik

jl . Therefore, the invertibility of R� can be
expressed as follows: there exists a matrix P such that

(1) P im
jn R

nk
ml = δi

lδ
k
j , Rim

jn P
nk
ml = δi

lδ
k
j .

Consider the following algebra:

ER := k
〈{zi

j}1≤i,j≤d

〉
/(zi

mz
j
nR

mn
kl = Rij

pqz
p
kz

q
l ),

which is in fact a coquasitriangular bialgebra [12, 13] with the coproduct given by
∆(zi

j) = zi
k⊗zk

j and the counit given by ε(zi
j) = δi

j . The coquasitriangular structure
is given by r(zi

j , z
k
l ) = Rki

jl . The bialgebra E is called the “function algebra” on the
corresponding quantum endomorphism space or the matrix quantum semigroup.

There is a right coaction of ER on V , given by δ(xi) = xj ⊗ zj
i . This coaction

induces actions of ER on V ⊗n for n ≥ 1. The braiding on V ⊗ V induced from
the coquasitriangular structure r is precisely the operator R. There is a natural
N-grading on ER, where the n-th homogeneous component consists of homogeneous
polynomials of total degree n and is denoted by En. Then En is a coalgebra and
coacts on V ⊗n from the right; hence its dual E∗

n acts on V ⊗n from the left.
The Hecke algebra Hn = Hq,n has generators Ti, 1 ≤ i ≤ n − 1, subject to the

relations: TiTj = TjTi, |i − j| ≥ 2;TiTi+1Ti = Ti+1TiTi+1, 1 ≤ i ≤ n − 2;T 2
i =

(q − 1)Ti + q. There is a k-basis in Hn indexed by permutations of n elements:
Tw, w ∈ Sn (Sn is the permutation group), in such a way that T(i,i+1) = Ti and
TwTv = Twv if the length of wv is equal to the sum of the length of w and the
length of v. If q is not a root of unity of degree greater than 1, Hn is a semisimple
algebra. For more details, the reader is referred to [2, 3].

The Hecke symmetry R induces an action of the Hecke algebra Hn = Hq,n on
V ⊗n, Ti �−→ Ri = idi−1 ⊗ R ⊗ idn−i−1 that commutes with the coaction of ER.
The action of Tw will be denoted by Rw. We have the following “Double centralizer
theorem” [6, Thm. 2.1].

1.1. The algebras ρn(Hn) and E∗
n are centralizers of each other in Endk(V ⊗n).

Consequently, simple E∗
n-modules (and hence simple En-comodules) can be given

as the image of primitive idempotents of Hn, and conjugate idempotents determine
isomorphic (co)modules. Since conjugate classes of primitive idempotents of Hn are
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indexed by partitions of n, simple subcomodules of V ⊗n are indexed by a subset of
partitions of n. Thus E is cosemisimple, and its simple comodules are indexed by
a subset of partitions.

Let Iλ denote the simple comodule corresponding to the partition λ. Then Iλ and
Iµ can be realized as the images of two primitive idempotents eλ ∈ Hr and eµ ∈ Hs.
Thus Iλ⊗Iµ is the image of a (not necessarily primitive) idempotent in Hr+s. This
idempotent decomposes into an orthogonal sum of primitive idempotents, which
yields a decomposition of Iλ and Iµ into a direct sum of simple subcomodules.
Taking into account that conjugate idempotents define isomorphic comodules, we
have [7]

(2) Iλ ⊗ Iµ ∼=
⊕

γ

Iγ
⊕cγ

λµ

where the cγλµ are the Littlewood-Richardson coefficients describing the multiplicity
of the Schur function sγ in the product of two other Schur functions sλ and sµ (cf.
[15]).

Example (Quantum symmetrizers). The primitive idempotent

Xn :=
1

[n]q

∑

w∈Sn

Rw

determines a simple comodule Sn called the n-th quantum symmetric tensor power,
and the primitive idempotent

Yn :=
1

[n]1/q

∑

w∈Sn

(−q)−l(w)Rw

determines a simple comodule ∧n called the n-th quantum anti-symmetric tensor
power. Notice that Sn = I(n) and ∧n = I(1n).

Let us briefly recall here the Littlewood-Richardson algorithm for computing the
coefficients cγλµ [15]. Let γ and λ be partitions with γi ≥ λi for all i. We define
the skew diagram [γ\λ] := {(i, j) : (i, j) ∈ [γ], λi < j ≤ γi}. The i-th row of the
diagram consists of nodes (i, j) with fixed i, and the j-th column consists of nodes
(i, j) with fixed j.

Let µ be a partition. A sequence of positive integers is said to have type µ if
each i occurs µi times. Such a sequence is said to be “good” if for any term i > 1,
the number of previous i− 1 in the sequence is strictly greater than the number of
previous i. For example, the good sequences of type µ = (2, 1) are 112, 121.

The coefficient cγλµ, where λ is a partition of r, µ is a partition of s and γ is a
partition of r + s, can be computed as follows:

(i) if λi > γi for some i, then cγλµ = 0;
(ii) if λi ≤ γi for every i, then cγλµ is the number of ways of replacing the nodes

(i, j) of [γ \ λ] by integers, such that
- each k occurs µk times;
- the numbers are non-decreasing along rows and strictly increasing

down columns;
- when reading from right to left in successive rows, we have a good

sequence of type µ.
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Example. Let [λ] = and [µ] = . There are two good sequences of type

µ = (2, 1) : (112), (121). We have the following possibilities for γ for which cγλµ �= 0:

1 1
2

1 1

2

1 1

2

1
2

1

1
2

1

1

1
2

1

2
1

1

1
2

1
1
2

which means

I(2,2,1) ⊗ I(2,1) = I(4,3,1) ⊕ I(4,22) ⊕ I(4,2,12) ⊕ I(32,2) ⊕ I(32,12) ⊕ I(3,22,1)
⊕2

⊕ I(3,2,13) ⊕ I(23,12).

Note however that not every partition defines a simple comodule, as some of them
may give zero-modules. To have more precise information on the simple comodules
of ER, we need the notion of birank of R. Consider the following formal series:

P∧(t) :=
∞∑

i=0

dim∧it
i.

We have the following theorem [7, Thm. 3.5]:

1.2. P∧(t) is a rational function having negative roots and positive poles:

P∧(t) =
∏r

i=1(1 + xit)∏s
j=1(1 − yjt)

, xi, yj > 0.

The pair (r, s) is called the birank of the Hecke symmetry R. A partition λ deter-
mines a non-zero simple ER-comodule if and only if λr+1 ≤ s.

The Hecke symmetry R is called even of rank r if it has birank (r, 0), i.e., if the
series P∧ is a polynomial of degree r. The Hecke symmetry R is called odd of rank
s if it has birank (0, s), i.e., if P∧−1 is a polynomial of degree s. There is generally
no relationship between the dimension of V and the (bi)rank of R (see examples
below).

Examples. The following are examples of Hecke symmetries that are known so
far.

• The solutions of the Yang-Baxter equation of series A, due to Drinfel’d and
Jimbo [11], provide an example of even Hecke symmetries. The associated
quantum groups are called standard deformations of GL(n).

• Cremmer and Gervais [4] found another series of solutions that are also
even Hecke symmetries.

• Hecke sums of odd and even Hecke symmetries [5, 16] are examples of non-
even, non-odd Hecke symmetries [14].

• Takeuchi and Tambara found a Hecke symmetry that is neither even nor a
Hecke sum of an odd and an even Hecke symmetry [18].

• Even Hecke symmetries of rank 2 were classified by Gurevich [5]. He also
shows that on each vector space of dimension ≥ 2, there exists an even
Hecke symmetry of rank 2.

• Hecke symmetries of birank (1, 1) were classified by the author [9].

The quantum group of type A is defined to be the “spectrum” of the subsequently
defined Hopf algebra. Let T = (tji ) be a d × d matrix of new variables. The Hopf
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algebra associated to R is a factor algebra of the free non-commutative algebra over
entries of Z and T :

(3) HR := T
〈{zi

j, t
i
j}1≤i,j≤d

〉 /(
zi

mz
j
nR

mn
kl = Rij

pqz
p
kz

q
l , t

i
pz

q
j = zi

pt
p
j = δi

j

)
.

HR is a Hopf algebra, the antipode is given by S(zi
j) = tij , and the coquasitriangular

structure on ER can be extended to HR thanks to the closedness of R: r(zi
j , t

k
l ) =

P ki
jl , r(t

i
j , z

i
l) = R−1ik

lj [8, Thm. 2.1.1].
If the Hecke symmetry R is even of rank r, HR is cosemisimple and its simple

comodules can be parameterized by sequences of r non-decreasing integers [8, Thm.
3.2.1]. A similar statement holds for odd Hecke symmetries.

If the Hecke symmetry R is neither even nor odd, the structure of HR-comodules
is more complicated than the structure of ER-comodules. In particular, the category
HR-comod is not semisimple. We have, however, the following result [8, Thm.
2.3.5].

1.3. The natural map ER −→ HR is injective. Consequently, every simple ER-
comodule is a simple HR-comodule.

Among HR-comodules that are not E-comodules, the super determinant plays an
important role. The well-known tool for defining the quantum super determinant
serves the Koszul complex (of second type) introduced by Manin [17]. This is
a (bi-)complex, whose (k, l) term is ∧k ⊗ Sl

∗. The differential is induced from
the dual basis map. The homology group of this complex is an HR-comodule;
if it is one dimensional over k, it defines a group-like element in HR called the
homological determinant or quantum super determinant or, in some cases, the
quantum Berezinian.

2. The Koszul complex

We begin with the description of the Koszul complex. We first recall the dual
comodule of a tensor product of two comodules. For two (finite-dimensional) co-
modules V,W , the dual to V ⊗W is isomorphic to W ∗⊗V ∗, with the pairing given
by (ϕ⊗ψ)(v⊗w) := ϕ(w)ψ(v), ϕ ∈W ∗, ψ ∈ V ∗, v ∈ V,w ∈W . The dual to longer
tensor products is defined in a similar way.

Fix a basis x1, x2, . . . , xd of V and let ξ1, ξ2, . . . , ξd be the dual basis in V ∗. Let
evV , be the evaluation map evV (ϕ ⊗ v) = ϕ(v) and dbV be the dual basis map
defined as follows: db : k −→ V ⊗ V ∗, db(1) =

∑
i xi ⊗ ξi. These maps clearly do

not depend on the choice of basis and are maps of HR-comodules. The term Kk,l

of the Koszul complex associated to R is ∧k ⊗ Sl
∗, and the differential dk,l is given

by:

∧k ⊗ Sl
∗ → V ⊗l ⊗ V ∗⊗l id⊗dbV ⊗id−→ V ⊗k+1 ⊗ V ∗⊗l+1 Yk+1⊗X∗

l+1−→ ∧k+1 ⊗ Sl+1
∗,

where Xl, Yk are the q-symmetrizer operators introduced in the previous section.
Thus we have in fact a collection of diagonal subcomplexes, each of which contains
the terms Kk,l with k− l equal to a fixed number. One defines another differential
d′ as follows:

∧k ⊗ Sl
∗ → V ⊗l ⊗ V ∗⊗l id⊗evV τV ⊗V ∗⊗id−→ V ⊗k−1 ⊗ V ∗⊗l−1 Yk−1⊗X∗

l−1−→ ∧k−1 ⊗ Sl−1
∗,

where τV,V ∗ denotes the braiding on V ⊗ V ∗ induced from the coquasitriangular
structure on HR, its matrix is given by P , the inverse to the half-adjoint of R.
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Since all vector spaces are HR-comodules and all maps are HR-comodule maps, we
have in fact complexes in HR-comod.

The differentials d and d′ satisfy [5]

(qdd′ + d′d) |Kk,l = qk(rankqR+ [l − k]q)id,

where rankqR := P ij
ij , and P is given in (1). Hence, if rankqR �= −[l − k]q, the

cohomology group at the term (k, l) vanishes.

Theorem 1. Let R be a Hecke symmetry of birank (r, s). Then
(i) rankqR = −[s− r]q;
(ii) the simple comodule Iλ is injective and projective in the category of HR-

comodules if and only if λr ≥ s;
(iii) the homology of the Koszul complex at the term (r, s) is non-vanishing.

Proof. Since R has birank (r, s), the simple E-comodule Iλ �= 0 iff λr+1 ≤ s. Using
this fact and the Littlewood-Richardson formula, we can easily show that (Hom
means HomHR):

Hom(I((s+1)r), I(sr+1) ⊗∧r ⊗ Ss
∗) ∼= Hom(I((s+1)r) ⊗ Ss, I(sr+1) ⊗∧r) = k,

Hom(I((s+1)r), I(sr+1) ⊗∧r−1 ⊗ Ss−1
∗)∼=Hom(I((s+1)r) ⊗ Ss−1, I(sr+1) ⊗∧r−1) = 0,

Hom(I((s+1)r), I(sr+1) ⊗∧r+1 ⊗ Ss+1
∗)∼=Hom(I((s+1)r) ⊗ Ss+1, I(sr+1) ⊗∧r+1) = 0.

As a consequence, I(sr+1)) ⊗∧r ⊗Ss
∗ contains I((s+1)r) as a subcomodule while the

comodules I(sr+1) ⊗∧r−1 ⊗ Ss−1
∗, I(sr+1) ⊗∧r+1 ⊗ Ss+1

∗ do not.
Assume that rankqR �= −[s − r]q. Then the complex is exact at Kr,s and

dd′ + d′d = qr(rankqR + [s − r]q)id �= 0. On the other hand, since I(s+1)r is
a submodule of I(sr+1) ⊗ ∧r+1 ⊗ Ss+1

∗, the restriction of idI((s+1)r ) ⊗ dr,s to it
should be zero. Analogously, the restriction of idI((s+1)r ) ⊗ dm,n to I((s+1)r) is zero.
Thus, the restriction of dd′ + d′d on I(s+1)r is zero, a contradiction. Therefore,
rankqR = −[s− r]q.

According to [10, Thm. 3.2] if rankqR = −[s− r]q, then H possesses a non-zero
integral (i.e. an H-comodule homomorphism H −→ k, where H coacts on itself by
the coproduct and on k by the unit map). Then, according to [10, Prop. 5.1] and to
[9, Thm. 3.1], Iλ is injective and projective in H-comod iff λr ≥ s. Thus, I((s+1)r) is
projective and injective. Therefore, if I((s+1)r) is a subquotient of a comodule, it is
a direct summand; hence it cannot be a subquotient of I(sr+1)⊗∧m−1⊗Sn−1

∗, and
in particular, it cannot be a subcomodule of I(sr+1) ⊗ Imdr−1,s−1. Consequently,

I(sr+1) ⊗ Imdr−1,s−1 �= I(sr+1) ⊗ Kerdm,n.

Thus, the sequence

· · · → I(sr+1)⊗∧r−1⊗Ss−1
∗ → I(sr+1))⊗∧r ⊗Ss

∗ → I(sr+1)⊗∧r+1⊗Sr+1
∗ → · · · ,

which is obtained by tensoring K ·· with I(sr+1), is not exact at the term (r, s),
whence neither is K ··. �

3. The case q = 1

Assume in this section that q = 1; thus, R2 is the identity map and H-comod
is a tensor category (i.e., symmetric rigid monoidal). By a theorem of Deligne [1],
there exists a faithful and exact tensor (i.e. symmetric monoidal) functor F from
H-comod to the category of vector superspaces. Under this functor, V is mapped
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to a certain vector superspace V and R is mapped to the supersymmetry on V ⊗V ,
denoted by T .

We can therefore reconstruct a super bialgebra E and a Hopf super algebra H
from V and T . We will show that this Hopf superalgebra is isomorphic to the
function algebra over the general linear supergroups GL(r|s), where (r, s) is the
birank of R, or, in other words, the super dimension of V is (r|s). Indeed, E is
the function algebra on End(V ) and the images of Iλ under the embedding F are
simple E-comodules. Since F is faithful and exact and since Iλ �= 0 ⇔ λr+1 < s,
we conclude that E is isomorphic to the function algebra on M(r|s). Hence H is
isomorphic to the function algebra on GL(r|s), by virtue of 1.3.

Let K
··

denote the image of the complex K ··. Then the homology of K
··

is
concentrated at the term (r, s), and is one-dimensional; it defines the super deter-
minant. As a consequence, the homology of K ·· is also concentrated at the term
(r, s), for F is faithful and exact. Let D denote the homology of K ··. Then D, the
image of D under F , is one-dimensional and hence invertible; consequently,

F(D∗ ⊗D) ∼= F(D∗) ⊗F(D) ∼= D
∗ ⊗D ∼= k,

where the last isomorphism is given by the evaluation morphism, that is, the image
of evD : D∗ ⊗D −→ k under F . Since F is faithful and exact, we conclude that
D∗ ⊗D ∼= k, that is D is invertible, hence one-dimensional. Thus, we have proved:

Theorem 2. Let R be a vector symmetry of birank (r, s). Then the associated
Koszul complex is exact everywhere except at the term (r, s) where it has a one-
dimensional homology group, which determines a group-like element called the ho-
mological determinant.

4. The case q generic

Using the result of the previous section we show in this section that given a
Hecke symmetry of birank (r, s) that depends algebraically on q, then, for a dense
set of values q, the associated Koszul complex is exact everywhere except at the
term (r, s), where it has a one-dimensional homology group and thus determines
a group-like element in HR, called the homological determinant. In this section k
will be assumed to be the field C of complex numbers.

Thus let R = Rq be a Hecke symmetry depending on a parameter q ∈ C. We
first observe that the dimension of ∧q,k does not depend on q, so far as q is not a
root of unity. Indeed, ∧q,k is the image of a projection, and its dimension can be
given as the trace of a matrix that depends algebraically on q. Since C without the
set of roots of unity is still connected, we conclude that this trace, being always
integral, must be a constant. The same happens with Sq,l. Thus, the terms of K ··

have dimension not depending on q.
On the other hand, observe that the rank of the operator dk,l

q , for almost any q
(that is, except for a finite number of values of q) is larger than the rank of dk,l

1 and
for the kernel of dk,l

q we have the reversed inequality. Consequently, the dimension
over k of the homology group H(Kk,l

q ) for almost any q is less than or equal to
the dimension of H(Kk,l

q ). According to Theorems 1 and 2, we conclude that for
an algebraically dense set of values of q, H(Kk,l

q ) = 0, for all (k, l) �= (r, s) and
H(Kr,s

q ) is one-dimensional.
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Theorem 3. Let R = Rq be a Hecke symmetry over C, depending algebraically on
q. Then there is an algebraically dense set of values of q for which the homology of
the Koszul complex is one-dimensional and concentrated at the term (r, s), where
(r, s) is the birank of R.
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