Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fibonacci numbers that are not sums of two prime powers


Authors: Florian Luca and Pantelimon Stanica
Journal: Proc. Amer. Math. Soc. 133 (2005), 1887-1890
MSC (2000): Primary 11B39; Secondary 11B25, 11B50, 11P32
DOI: https://doi.org/10.1090/S0002-9939-05-07827-5
Published electronically: February 15, 2005
MathSciNet review: 2099413
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we construct an infinite arithmetic progression $\mathcal A$ of positive integers $n$ such that if $n\in {\mathcal A}$, then the $n$th Fibonacci number is not a sum of two prime powers.


References [Enhancements On Off] (What's this?)

  • 1. F. Cohen and J. L. Selfridge, `Not every number is the sum or difference of two prime powers', Math. Comp. 29 (1975), 79-81. MR 0376583 (51:12758)
  • 2. J. G. van der Corput, `On de Polignac's conjecture', Simon Stevin 27 (1950), 99-105. MR 0035298 (11:714e)
  • 3. P. Erdos, `On integers of the form $2^k+p$ and some related problems', Summa Brasil. Math. 2 (1950), 113-123. MR 0044558 (13:437i)
  • 4. J.-H. Evertse, K. Gyory, C. L. Stewart and R. Tijdeman, `$S$-unit equations and their applications', in New advances in transcendence theory (Durham, 1986), 110-174, Cambridge Univ. Press, Cambridge, 1988. MR 0971998 (89j:11028)
  • 5. R. K. Guy, Unsolved Problems in Number Theory, Springer, 1994. MR 1299330 (96e:11002)
  • 6. F. Luca, `On integers which are not differences of two powers', Mathematika, 49 (2002), no. 1-2. 231-243 (2004). MR 2059057 (2004c:11041)
  • 7. A. de Polignac, `Recherches nouvelles sur les nombres premiers', C.R. Acad. Sci. Paris Math. 29 (1949), 397-401, 738-739.
  • 8. N. P. Romanoff, `Über einige Sätze der additiven Zahlentheorie ', Math. Ann. 57 (1934), 668-678.
  • 9. Z. W. Sun, `On integers not of the form $\pm p^a\pm q^b$', Proc. Amer. Math. Soc. 128 (2000), 997-1002. MR 1695111 (2000i:11157)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 11B39, 11B25, 11B50, 11P32

Retrieve articles in all journals with MSC (2000): 11B39, 11B25, 11B50, 11P32


Additional Information

Florian Luca
Affiliation: IMATE, UNAM, Ap. Postal 61-3 (Xangari), CP. 58 089, Morelia, Michoacán, Mexico
Email: fluca@matmor.unam.mx

Pantelimon Stanica
Affiliation: Department of Mathematics, Auburn University Montgomery, Montgomery, Alabama 36124-4023
Email: pstanica@mail.aum.edu

DOI: https://doi.org/10.1090/S0002-9939-05-07827-5
Keywords: Fibonacci numbers, arithmetic progressions, covering system of congruences.
Received by editor(s): February 13, 2004
Published electronically: February 15, 2005
Communicated by: David E. Rohrlich
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society