A NOTE ON ADJOINT LINEAR SYSTEMS

SEUNGHUN LEE

(Communicated by Michael Stillman)

Abstract. In this note, we give a weak estimate on the separation of tangent directions of the conjecture of Fujita for adjoint linear systems on smooth varieties.

1. Introduction

Let X be a smooth projective variety of dimension n. For a Cartier divisor A and a point $p \in X$, we define

\[\text{Bv}(A, p) = \bigcap_{D \in \mid A - p \mid} \mathbb{P}(T_p D), \]

where $|A - p|$ is the sublinear system of $|A|$ whose members are divisors in $|A|$ passing through p and $\mathbb{P}(T_p D)$ is the projectivised tangent space of D at p as a subspace of the projectivised tangent space $\mathbb{P}(T_p X)$ of X at p. The conjecture of Fujita [3] asserts that, for every ample divisor H on X and every point $p \in X$,

\[\text{Bv}(K_X + tH, p) = \emptyset \]

if $t \geq n + 2$. This has been known for curves, surfaces [6], and recently it was proved for Fano threefolds in [5] using the classification of Fano threefolds.

The purpose of this note is to prove the following weak estimate for varieties of arbitrary dimensions.

Theorem 1.1. Let X be a smooth projective variety of dimension n and H an ample Cartier divisor on X. Then for every point p of X,

\[\dim \text{Bv}(K_X + tH, p) \leq n - 2 \]

if $t \geq n^2 + n + 1$. Equivalently, general members of $|K_X + tH - p|$ are smooth at p.

Let us give a sketch of the proof. Let p be a point in X. Our aim is to construct a \mathbb{Q}-divisor G on X satisfying the following properties. We refer to the next section for the notation used here.

(1) $tH - G$ is an ample \mathbb{Q}-divisor on X.

(2) The connected component at p of the multiplier ideal scheme for G, noted by $Z(G)$, is supported only at p and its length is at least 2.
Then a standard application of the Nadel vanishing theorem implies that a general element of \([K_X + tH - p]\) is smooth at \(p\). However note that we cannot construct \(G\) so that \(Z\) contains a preassigned tangent direction. In the proof, we will need the following induction step.

Suppose we have created a \(\mathbb{Q}\)-divisor \(G\) so that \(Z(G)\) contains a length two subscheme supported at \(p\) and that \(G\) satisfies the following properties: For any rational \(0 < \epsilon << 1\),

1. the multiplier ideal scheme, \(Z((1 - \epsilon)G)\), for \((1 - \epsilon)G\) does not contain any subscheme of length two supported at \(p\);
2. the “difference” of multiplier ideals of \(G\) and \((1 - \epsilon)G\) is given by a positive-dimensional integral subscheme \(Z\) through \(p\).

In this case, we need to consider two separate cases. First, suppose that \(Z((1 - \epsilon)G)\) contains \(p\). We consider a family of \(\mathbb{Q}\)-divisors \(\{B_t\}\) on \(Z\) with a multiplicity at \(x_t\) no less than the dimension of \(Z\) for a general \(t\). Let \(D_t\) be a local \(\mathbb{Q}\)-divisor on \(X\) near \(x_t\) such that \(D_t|_Z = B_t\) and \(\text{ord}_{x_t}D_t \geq \text{ord}_{x_t}B_t\). Then by considering the coefficient of the exceptional divisor of the blowing up of \(X\) at \(x_t\), one can deduce that \(Z((1 - \epsilon)G + D_t)\) contains \(x_t\). Next we take a global lifting \(D_t'\) of \(B_t\) in \(X\). Theorem 2.7 will guarantee that \(Z((1 - \epsilon)G + D_t')\) still contains \(x_t\). Since \(p\) is always contained in this new multiplier ideal by our assumption, it contains a length two subscheme. Now by specializing \(D_t'\) to \(D'\) at \(p\), we can assure that the connected component of \(Z((1 - \epsilon)G + D)\) at \(p\) contains a length two subscheme. If this connected component has dimension zero, then we are done. Otherwise we will have to repeat this process. When \(Z((1 - \epsilon)G)\) does not contains \(p\), the argument is similar, except that in this case we need to make sure that \(Z((1 - \epsilon)G + D_t)\) contains a length two subscheme supported at \(x_t\) by choosing \(B_t\) with a higher multiplicity at \(x_t\).

Notation. We will work over the field of complex numbers.

- \(\sim\) \(\mathbb{Q}\)-linear equivalence.
- \([\cdot]\) round-up.

2. Preliminaries

Here we collect some properties of multiplier ideals which are needed later in the proof. We refer to [1] and [4] for the details.

Definition 2.1. Let \(X\) be a complete variety and let \(W\) a finite subscheme of \(X\). Let \(H\) be a Cartier divisor on \(X\). We say that \(|H|\) separates \(W\) if the following natural restriction is surjective:

\[
H^0(X, \mathcal{O}_X(H)) \longrightarrow H^0(W, \mathcal{O}_W \otimes \mathcal{O}_X(H)) \longrightarrow 0.
\]

Definition 2.2. Let \(X\) be a variety. Let \(G\) be an effective \(\mathbb{Q}\)-Cartier divisor on \(X\).

1. Let \(p\) be a smooth point of \(X\). Let \(f : Y \longrightarrow X\) be the blowing up of \(X\) at \(p\) and let \(E\) be the exceptional divisor over \(p\). We define the order of \(G\) at \(p\), \(\text{ord}_pG\), to be the coefficient of \(E\) in \(f^*G\).
2. Let \(W\) be a length two subscheme of \(X\) consisting of two distinct smooth points \(p\) and \(q\) in \(X\). We define the order of \(G\) at \(W\), \(\text{ord}_W G\), to be the minimum between \(\text{ord}_pG\) and \(\text{ord}_qG\).
(3) Let W be a non-reduced length two subscheme of X supported at a smooth point p of X, i.e. $W = \{p, v\}$ for some $v \in \mathbb{P}(T_p X)$. Let $f : U \rightarrow X$ be the blowing up of X at p with the exceptional divisor E and $v \in E$. We define the order of G at W, $\text{ord}_W G$, to be $\frac{1}{2} \text{ord}_v f^* G$.

Lemma 2.3 (Lemma 2.4 in [4]). Let X be a complete variety of dimension n, let L be a nef and big \mathbb{Q}-Cartier divisor on X, and let W be a finite subscheme of $l := \text{length} W \leq 2$ supported on the smooth locus of X. For every $\epsilon > 0$, there exists an effective \mathbb{Q}-divisor D such that $D \cong L$ and

$$\text{ord}_W \geq \frac{n}{L} - \epsilon.$$

Multiplier ideals. Let X be a smooth variety, W a 0-dimensional closed subscheme of X, G an effective \mathbb{Q}-Cartier divisor on X, and $f : Y \rightarrow X$ a log resolution for (X, G). Since $f_* \mathcal{O}_Y(K_Y/X) = \mathcal{O}_X$,

$$f_* \mathcal{O}_Y([K_Y - f^* (K_X + G)]) \subset \mathcal{O}_X.$$

We call this ideal sheaf the multiplier ideal for G. Let $Z(G)$ be the scheme defined by this ideal and note the multiplier ideal by $\mathcal{I}_{Z(G)}$.

Remark 2.4. By a standard method, one can easily check that $\mathcal{I}_{Z(G)}$ is independent of the choice of log resolution.

We say that G is pseudo-critical at W if $W \subset Z(G)$, but $W \not\subset Z(\lambda G)$ for any $\lambda < 1$. Furthermore, we say the pair (G, f), or simply G, is critical at W if G is pseudo-critical at W, and there is a unique prime divisor F on Y such that

$$[K_Y - f^*(K_X + G)] = [K_Y - f^*(K_X + (1 - \epsilon)G)] - F$$

for all sufficiently small $0 < \epsilon << 1$. We call F the critical component of G and $f(F)$ the critical variety of G at W.

Remark 2.5 (Remark 3.4 in [4]). Suppose G is ample and pseudo-critical at W. Then, using the so-called tie-braking technique, one can perturb G a little bit so that the new divisor (together with the same log resolution) is critical at W.

Theorem 2.6 (Theorem 3.7 in [4]). We assume that X is complete. Let H be a Cartier divisor on X such that $H - K_X - G$ is nef and big. Let \mathcal{I} be an ideal sheaf of \mathcal{O}_X satisfying $\mathcal{I}_{Z(G)} \subset \mathcal{I}$ and $\dim \text{Supp} \mathcal{I}/\mathcal{I}_{Z(G)} = 0$. Suppose that $\mathcal{I}_{Z(G)} \subset \mathcal{I}_W$ but $\mathcal{I} \not\subset \mathcal{I}_W$. Then there is $D \in |H|$ such that $\text{length} W = \text{length}(D \cap W) + 1$.

Theorem 2.7 (Theorem 3.9 in [4]). Suppose G is critical at W with the critical variety Z. Let B be a non-zero effective \mathbb{Q}-Cartier divisor on Z. Let D_1 and D_2 be two liftings of B, i.e. $B = D_i|_Z$ for $i = 1, 2$. If

$$W \subset Z((1 - s)D_1 + (1 - t)G)$$

for all sufficiently small s and t, then

$$W \subset Z((1 - s)D_2 + (1 - t)G)$$

for all sufficiently small s and t.

Definition 2.8. Suppose G is critical at W with the critical variety Z. Let B be an effective \mathbb{Q}-Cartier divisor on Z. An effective \mathbb{Q}-Cartier divisor D is said to be a nice lifting of B with respect to G if

$$D|_Z = B \quad \text{and} \quad \text{Supp} J \subsetneq Z.$$
where J is defined by

$$0 \to \mathcal{I}_{Z((1-t)G+D)} \to \mathcal{I}_{Z((1-t)G)} \to J \to 0$$

for $0 < t << 1$.

Proposition 2.9 (Proposition 3.10 in [H]). Suppose G is critical at W with the critical variety Z. Let B be an effective \mathbb{Q}-Cartier divisor on Z. Let A be a \mathbb{Q}-ample Cartier divisor on X such that $B \equiv A|_Z$. Then there is a nice lifting D of B with respect to G such that $D \not\equiv A$.

Proposition 2.10 (Proposition 3.12 in [H]). Suppose that G is critical at $\{p\}$ with the critical variety Z of dimension $d > 0$. If D is a \mathbb{Q}-Cartier divisor on X with $\text{ord}_p D > d$, then $p \in Z((1-\epsilon)G + D)$ for all $0 < \epsilon << 1$.

3. Proof of Theorem 3.1

In the spirit of [2] we will prove below a result which is a bit stronger. Theorem 3.1 follows from it easily.

Theorem 3.1. Let X be a smooth projective variety of dimension n and let H be a Cartier divisor on X. Then for every point p of X,

$$\dim \text{Br}(K_X + H, p) \leq n - 2$$

if $H^d \cdot Z \geq \{n^2 + n - 1\}^d$ for every subvariety Z of dimension d. Equivalently, general members of $|K_X + H - p|$ are smooth at p.

The proof of Theorem 3.1 uses the following two lemmas on the behavior of multiplier ideals in a family.

Lemma 3.2 (Proposition 2.7 in [H]). Let X be a variety and let p be a smooth point of X. Let T be the normalization of an irreducible affine curve containing p. Let q be a preimage of p in T. Let $\{D_t\}_{t \in T}$ be an algebraic family of \mathbb{Q}-Cartier divisors on X. Suppose $t \in Z(D_t)$ for general t. Then $p \in Z(D_q)$.

Lemma 3.3. Let X be a variety and let p be a smooth point of X. Let T be the normalization of an irreducible affine curve containing p. Let q be a preimage of p in T and let W be the image in X of the length two subscheme of T supported at q. Let $\{D_t\}_{t \in T}$ be an algebraic family of \mathbb{Q}-Cartier divisors on X. If $\{t, p\} \subset Z(D_t)$ for general t, then $W \subset Z(D_q)$.

Proof. Let $\phi : Y \longrightarrow X \times T$ be a log resolution of $D := \bigcup_D D_t$. Then

$$\phi^{-1}(X \times \{t\}) \longrightarrow X \times \{t\}$$

is a log resolution of D_t and $Z(D) \cap X \times \{t\} = Z(D_t)$ for general t. Thus $W \subset Z(D) \cap X \times \{p\}$, and by Proposition 2.1 in [H], $W \subset Z(D_p)$.\qed

Proof of Theorem 3.1 We fix a positive rational number $0 < \delta < \frac{1}{4n}$ and set $A := \frac{1}{n+2n+1}H$. From Lemma 2.3, we have a \mathbb{Q}-divisor $D \equiv (2n+\delta)A$ such that $\text{ord}_p D > 2n \geq n + 1$. Then $Z(\eta D) \subset T^p_\eta$ for some $\eta \leq \frac{n+1}{\text{ord}_p D} < 1$. Let η_1 be the positive rational number such that $\eta_1 D$ becomes pseudo-critical at p. We have $\eta_1 \leq \eta < 1$. By Remark 2.5, we may assume that $\eta_1 D$ is critical at p with the critical variety Z_1. There are two possibilities.

If $\dim Z_1 > 0$, then we move to 3.1 with $G = \eta_1 D$, $\lambda = \eta_1(2n + \delta)$, and $Z = Z_1$.

Suppose that \(\dim Z_1 = 0 \). In this case, we need to increase \(\eta_1 \). Let \(\eta_2 \) be the smallest rational number such that \(Z(\eta_2 D) \) contains a length two subscheme of \(X \). Note that \(\eta_2 \leq \eta < 1 \). Again by Remark 2.5 we may assume that there is at most one positive-dimensional irreducible component of \(Z(\eta_2 D) \) through \(p \). We need to consider two separate cases.

First assume that \(Z(\eta_2 D) \) has a unique positive-dimensional component, say \(Z_2 \), through \(p \). Then \(Z(c\eta_2 D) = \{p\} \) for all \(0 < c < 1 \) near \(p \) and \(\eta_2 D \) is critical at every length two subscheme \(W \) in \(Z_2 \) with \(\text{Supp} W = p \). Now we proceed to 3.2 with \(G = \eta_2 D, \lambda = \eta_2(2n + \delta) \), and \(Z = Z_2 \).

If \(Z(\eta_2 D) \) does not have a positive-dimensional irreducible component through \(p \), then we go to 3.3 with \(G = \eta_2 D \) and \(\lambda = \eta_2(2n + \delta) < 2n + 1 \).

3.1. Induction step: case 1. Let \(G \) be a \(\mathbb{Q} \)-divisor on \(X \) such that

1. \(G \subseteq \lambda A \) for a rational number \(0 < \lambda \),
2. \(G \) is critical at \(p \),
3. \(Z \), the critical variety of \(G \), has a positive dimension \(d > 0 \).

Let \(T \) be the normalization of an irreducible affine curve containing \(p \). Let \(q \) be a preimage of \(p \) in \(T \) and let \(W \) be the image in \(X \) of the length two subscheme of \(T \) supported at \(q \). By applying Lemma 2.3 over the function field of \(T \), we obtain an algebraic family of \(\mathbb{Q} \)-Cartier divisors \(\{B_t\}_{t \in T} \) on \(Z \) such that \(B_t \supseteq (d + \delta)A \) and, for a general \(t \), \(\text{ord}_t B_t > d \). By Proposition 2.9, there exists a nice lifting \(\tilde{D}_q \) of \(2B_q \) with respect to \(G \). We put \(D_q = \frac{1}{\lambda}\tilde{D}_q \). We can lift \(D_q \) to an algebraic family \(\{D_t\} \) of \(\mathbb{Q} \)-divisors so that \(D_t|_Z = B_t \) and \(D_t \supseteq (d + \delta)A \). For a general \(t \) we choose a local lifting \(D_t \) of \(B_t \) with \(\text{ord}_t D_t \geq \text{ord}_t B_t \). From Proposition 2.10 we have \(t \in Z(cG + D_t) \) for a general \(t \) and a positive rational number \(0 < c < 1 \). Since \(G \) is critical at a general point \(t \) of \(T \), \(t \in Z(cG + D_t) \) by Theorem 2.4. Thus \(p \in Z(cG + D_q) \) by Lemma 3.2. Let \(\eta_1 \) be the constant such that \(cG + \eta_1 D_q \) becomes pseudo-critical at \(p \). Then \(\eta_1 \leq 1 \). By Remark 2.5 we may assume that \(cG + \eta_1 D_q \) is critical at \(p \) with the critical variety \(Z_1 \). By construction, we know that \(Z_1 \) is a proper subvariety of \(Z \).

Suppose that \(\dim Z_1 > 0 \). Then we go back to the beginning of 3.1 with \(G = cG + \eta_1 D_q, \lambda = c\lambda + \eta_1(d + \delta) \), and \(Z = Z_1 \).

Suppose that \(\dim Z_1 = 0 \). Since \(\{p, t\} \subset Z(cG + \eta_1 D_q + D_t) \) by Proposition 2.10, \(W \subset Z(cG + \eta_1 D_q + D_q) \) by Lemma 3.3. Let \(\eta_2 \) be the smallest rational number such that \(Z(cG + \eta_1 D_q + \eta_2 D_q) \) contains a length two subscheme of \(X \). Then \(\eta_2 \leq 1 \). By Remark 2.3 we may assume that there is at most one positive-dimensional irreducible component of \(Z(cG + \eta_1 D_q + \eta_2 D_q) \) supported at \(p \). If there exists such a component, say \(Z_2 \), then we go to 3.2 with \(G = cG + \eta_1 D_q + \eta_2 D_q, \lambda = c\lambda + (\eta_1 + \eta_2)(d + \delta) \), and \(Z = Z_2 \). Otherwise, we go to 3.3 with \(G = cG + \eta_1 D_q + \eta_2 D_q \) and \(\lambda = c\lambda + (\eta_1 + \eta_2)(d + \delta) < \lambda + 2(d + \delta) < \lambda + 2d + \frac{1}{\lambda} \).

3.2. Induction step: case 2. Let \(G \) be a \(\mathbb{Q} \)-divisor on \(X \) such that

1. \(G \subseteq \lambda A \) for a rational number \(0 < \lambda \),
2. \(Z(cG) = \{p\} \) near \(p \) for all rational numbers \(0 < c < 1 \),
3. \(Z(G) \) has a unique positive-dimensional irreducible component, say \(Z \), through \(p \).

Let \(T \) be the normalization of an irreducible affine curve containing \(p \). Let \(q \) be a preimage of \(p \) in \(T \) and let \(W \) be the image in \(X \) of the length two subscheme of \(T \) supported at \(q \). By Lemma 2.3 we have an algebraic family of \(\mathbb{Q} \)-Cartier divisors
\{B_t\}_{t \in T}$ on Z such that $B_t \sim (d + \delta)A|Z$ and, for a general t, ord$_t B_t > d$. By Proposition 2.9, there exists a nice lifting D_q of B_q with respect to G. We can lift D_q to an algebraic family $\{D_t\}$ of \mathbb{Q}-divisors so that $D_t|Z = B_t$ and $D_t \sim (d + \delta)A$. For a general t, we choose a local lifting D'_t of B_t with ord$_t D'_t \geq$ ord$_t B_t$. By Proposition 2.10, $t \in Z(cG + D'_t)$ for a general t. Since G is critical at t for a general t, $\{p, t\} \subset Z(cG + D_t)$ by Theorem 2.7. Then $W \subset Z(cG + D_q)$ by Proposition 3.3. The support of $Z(cG + D_t)$ is properly contained in the support of $Z(G)$ near p by construction. Let η be the smallest positive rational number such that $Z(cG + \eta D_q)$ contains a length two subscheme supported at p. Clearly $\eta \leq 1$. By Remark 3.3, we may assume that there exists at most one positive-dimensional irreducible component passing through p. If there exists such a component, say Z', then we go back to the beginning of 3.2 with $G = cG + \eta D_q$, $\lambda = c\lambda + \eta(d + \delta)$, and $Z = Z'$. Otherwise we proceed to 3.3 with $G = cG + D_p$, and $\lambda = c\lambda + \eta(d + \delta) < \lambda + d + \frac{1}{2n}$.

3.3. **Final step:** By our choice of δ and the construction,
\begin{enumerate}
 \item $G \sim \lambda A = \frac{\lambda}{n^2 + n + 1}H$ for some $0 < \lambda < n^2 + n + 1$,
 \item $Z(G)$ has an isolated support at p, and
 \item $Z(G)$ contains a length two subscheme W supported at p.
\end{enumerate}
Since $H - G$ is nef and big by (1), Theorem 2.6 and (2) imply that $|K_X + H|$ separates the connected component of $Z(G)$ at p. Then $|K_X + H|$ separates every length two subscheme W (which exists by the condition (3)) of $Z(G)$ with Supp $W = p$. Thus general elements of $|K_X + H - p|$ are smooth at p. \hfill \square

Acknowledgment

I would like to thank Prof. Lawrence Ein for his valuable advice.

References

Department of Mathematics, Konkuk University (143-701), Kwangjin-Gu Hwayang-dong 1, Seoul, Korea
E-mail address: mbrs@kkucc.konkuk.ac.kr