Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A reduction of the Jacobian Conjecture to the symmetric case


Authors: Michiel de Bondt and Arno van den Essen
Journal: Proc. Amer. Math. Soc. 133 (2005), 2201-2205
MSC (2000): Primary 14R15, 14R10
DOI: https://doi.org/10.1090/S0002-9939-05-07570-2
Published electronically: March 4, 2005
MathSciNet review: 2138860
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main result of this paper asserts that it suffices to prove the Jacobian Conjecture for all polynomial maps of the form $x+H$, where $H$ is homogeneous (of degree 3) and $JH$ is nilpotent and symmetric. Also a 6-dimensional counterexample is given to a dependence problem posed by de Bondt and van den Essen (2003).


References [Enhancements On Off] (What's this?)

  • 1. H. Bass, E. Connell and D. Wright, The Jacobian Conjecture: Reduction of degree and formal Expansion of the Inverse, Bulletin of the AMS, 7 (1982), 287-330. MR 0663785 (83k:14028)
  • 2. M. de Bondt and A. van den Essen, Nilpotent symmetric Jacobian matrices and the Jacobian Conjecture, J. Pure Appl. Algebra, 193 (2004), no. 1-3, 61-70. MR 2076378
  • 3. M. de Bondt and A. van den Essen, Nilpotent symmetric Jacobian matrices and the Jacobian Conjecture II, Pure Appl. Algebra, 196 (2005), 135-148.
  • 4. A.Cima, A,Gasull and F. Mañosas, The discrete Markus-Yamabe problem, Nonlinear Analysis: Theory, Methods & Applications, 35 (1999), no. 3, 343-354. MR 1643454 (2000j:37030)
  • 5. A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Vol. 190, in Progress in Mathematics, Birkhäuser, 2000. MR 1790619 (2001j:14082)
  • 6. A. van den Essen and S. Washburn, The Jacobian Conjecture for symmetric matrices, J. Pure Appl. Algebra, 189 (2004), no. 1-3, 123-133. MR 2038568 (2004m:14133)
  • 7. E. Hubbers, The Jacobian Conjecture: Cubic homogeneous maps in Dimension Four, Masters's thesis, University of Nijmegen, 1994.
  • 8. G. Meisters, Polyomorphisms conjugate to Dilatations, pp. 67-88 in Automorphisms of Affine Spaces, Kluwer Academic Publishers (ed. A. van den Essen), 1995. MR 1352691 (97m:14020)
  • 9. G. Meng, Legendre Transform, Hessian Conjecture and Tree Formula, http://front.math.ucdavis.edu/math-ph/0308035.
  • 10. C. Olech, On the Markus-Yamabe stability conjecture, pp. 127-137 in Proc. of the Intern. Meeting on Ordinary Differential Equations and their Applications, University of Florence, 1995.
  • 11. K. Rusek, Polynomial Automorphisms, preprint 456, Inst. of Math. Polish Acad. of Sciences, IMPAN, Warsaw, 1989.
  • 12. D. Wright, The Jacobian Conjecture: linear triangularization for cubics in dimension three, Linear and Multilinear Algebra, 34 (1993), 85-97. MR 1334679 (96j:14008)
  • 13. A. Yagzhev, On Keller's problem, Siberian Math. J., 21 (1980), 747-754.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14R15, 14R10

Retrieve articles in all journals with MSC (2000): 14R15, 14R10


Additional Information

Michiel de Bondt
Affiliation: Department of Mathematics, Radboud University of Nijmegen, Postbus 9010, 6500 GL Nijmegen, The Netherlands
Email: debondt@math.kun.nl

Arno van den Essen
Affiliation: Department of Mathematics, Radboud University of Nijmegen, Postbus 9010, 6500 GL Nijmegen, The Netherlands
Email: essen@math.kun.nl

DOI: https://doi.org/10.1090/S0002-9939-05-07570-2
Keywords: Jacobian Conjecture, Hessian Conjecture, dependence problems
Received by editor(s): June 30, 2003
Published electronically: March 4, 2005
Communicated by: Bernd Ulrich
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society