Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hopf algebras of dimension $2p$


Author: Siu-Hung Ng
Journal: Proc. Amer. Math. Soc. 133 (2005), 2237-2242
MSC (2000): Primary 16W30
DOI: https://doi.org/10.1090/S0002-9939-05-07804-4
Published electronically: February 15, 2005
MathSciNet review: 2138865
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $H$ be a finite-dimensional Hopf algebra over an algebraically closed field of characteristic 0. If $H$ is not semisimple and $\dim(H)=2n$ for some odd integer $n$, then $H$ or $H^*$ is not unimodular. Using this result, we prove that if $\dim(H)=2p$ for some odd prime $p$, then $H$ is semisimple. This completes the classification of Hopf algebras of dimension $2p$.


References [Enhancements On Off] (What's this?)

  • [And02] Nicolás Andruskiewitsch, About finite dimensional Hopf algebras, Quantum symmetries in theoretical physics and mathematics (Bariloche, 2000), Contemp. Math., vol. 294, Amer. Math. Soc., Providence, RI, 2002, pp. 1-57. MR 1907185 (2003f:16059)
  • [AS98] Nicolás Andruskiewitsch and Hans-Jürgen Schneider, Hopf algebras of order $p\sp 2$ and braided Hopf algebras of order $p$, J. Algebra 199 (1998), no. 2, 430-454. MR 1489920 (99c:16033)
  • [BD] M. Beattie and S. Dascalescu, Hopf algebras of dimension $14$, J. London Math. Soc. (2) 69 (2004), no. 1, 65-78. MR 2025327
  • [EG] Pavel Etingof and Shlomo Gelaki, On Hopf algebras of dimension $pq$, J. Algebra 277 (2004), no. 2, 668-674. MR 2067625
  • [EG98] -, Semisimple Hopf algebras of dimension $pq$ are trivial, J. Algebra 210 (1998), no. 2, 664-669. MR 1662308 (99k:16079)
  • [GW00] Shlomo Gelaki and Sara Westreich, On semisimple Hopf algebras of dimension $pq$, Proc. Amer. Math. Soc. 128 (2000), no. 1, 39-47. MR 1618670 (2000c:16050)
  • [LR87] Richard G. Larson and David E. Radford, Semisimple cosemisimple Hopf algebras, Amer. J. Math. 109 (1987), no. 1, 187-195. MR 0926744 (89a:16011)
  • [LR88] -, Finite-dimensional cosemisimple Hopf algebras in characteristic $0$ are semisimple, J. Algebra 117 (1988), no. 2, 267-289. MR 0957441 (89k:16016)
  • [Mas95] Akira Masuoka, Semisimple Hopf algebras of dimension $2p$, Comm. Algebra 23 (1995), no. 5, 1931-1940. MR 1323710 (96e:16050)
  • [Mas96] -, The $p\sp n$ theorem for semisimple Hopf algebras, Proc. Amer. Math. Soc. 124 (1996), no. 3, 735-737. MR 1301036 (96f:16046)
  • [Mon93] Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1993. MR 1243637 (94i:16019)
  • [Mon98] -, Classifying finite-dimensional semisimple Hopf algebras, Trends in the representation theory of finite-dimensional algebras (Seattle, WA, 1997), Contemp. Math., vol. 229, Amer. Math. Soc., Providence, RI, 1998, pp. 265-279. MR 1676225 (99k:16084)
  • [Ng] Siu-Hung Ng, Hopf algebras of dimension $pq$, J. Algebra 276 (2004), no. 1, 399-406. MR 2054403
  • [Ng02a] -, Hopf algebras of dimension $p\sp 2$, Proceedings of the International Conference on Hopf Algebras, DePaul University, Chicago (2002).
  • [Ng02b] -, Non-semisimple Hopf algebras of dimension $p\sp 2$, J. Algebra 255 (2002), no. 1, 182-197. MR 1935042 (2003h:16067)
  • [NZ89] Warren D. Nichols and M. Bettina Zoeller, A Hopf algebra freeness theorem, Amer. J. Math. 111 (1989), no. 2, 381-385. MR 0987762 (90c:16008)
  • [Rad76] David E. Radford, The order of the antipode of a finite dimensional Hopf algebra is finite, Amer. J. Math. 98 (1976), no. 2, 333-355. MR 0407069 (53:10852)
  • [Rad94] -, The trace function and Hopf algebras, J. Algebra 163 (1994), no. 3, 583-622. MR 1265853 (95e:16039)
  • [Swe69] Moss E. Sweedler, Hopf algebras, W. A. Benjamin, Inc., New York, 1969, Mathematics Lecture Note Series. MR 0252485 (40:5705)
  • [Taf71] Earl J. Taft, The order of the antipode of finite-dimensional Hopf algebra, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 2631-2633. MR 0286868 (44:4075)
  • [Wil88] R. Williams, Finite dimensional hopf algebras, Ph.D. Thesis, Florida State University, 1988.
  • [Zhu94] Yongchang Zhu, Hopf algebras of prime dimension, Internat. Math. Res. Notices (1994), no. 1, 53-59. MR 1255253 (94j:16072)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 16W30

Retrieve articles in all journals with MSC (2000): 16W30


Additional Information

Siu-Hung Ng
Affiliation: Department of Mathematics, Iowa State University, Ames, Iowa 50011
Email: rng@math.iastate.edu

DOI: https://doi.org/10.1090/S0002-9939-05-07804-4
Keywords: Finite-dimensional Hopf algebras
Received by editor(s): November 24, 2003
Received by editor(s) in revised form: April 7, 2004
Published electronically: February 15, 2005
Communicated by: Martin Lorenz
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society