The -harmonic forms on rotationally symmetric Riemannian manifolds revisited

Author:
N. Anghel

Journal:
Proc. Amer. Math. Soc. **133** (2005), 2461-2467

MSC (2000):
Primary 53C27, 58J50; Secondary 54A10

Published electronically:
March 17, 2005

MathSciNet review:
2138889

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We use separation of variables for generalized Dirac operators on rotationally symmetric Riemannian manifolds to recover a theorem of Dodziuk regarding the spaces of -harmonic forms on such manifolds.

**[A]**N. Anghel,*𝐿²-index formulae for perturbed Dirac operators*, Comm. Math. Phys.**128**(1990), no. 1, 77–97. MR**1042444****[C]**Hyeong In Choi,*Characterizations of simply connected rotationally symmetric manifolds*, Trans. Amer. Math. Soc.**275**(1983), no. 2, 723–727. MR**682727**, 10.1090/S0002-9947-1983-0682727-4**[Cr]**Christopher B. Croke,*Riemannian manifolds with large invariants*, J. Differential Geom.**15**(1980), no. 4, 467–491 (1981). MR**628339****[D]**Jozef Dodziuk,*𝐿² harmonic forms on rotationally symmetric Riemannian manifolds*, Proc. Amer. Math. Soc.**77**(1979), no. 3, 395–400. MR**545603**, 10.1090/S0002-9939-1979-0545603-8**[GL]**Mikhael Gromov and H. Blaine Lawson Jr.,*Positive scalar curvature and the Dirac operator on complete Riemannian manifolds*, Inst. Hautes Études Sci. Publ. Math.**58**(1983), 83–196 (1984). MR**720933****[GW]**R. E. Greene and H. Wu,*Function theory on manifolds which possess a pole*, Lecture Notes in Mathematics, vol. 699, Springer, Berlin, 1979. MR**521983****[M]**Peter March,*Brownian motion and harmonic functions on rotationally symmetric manifolds*, Ann. Probab.**14**(1986), no. 3, 793–801. MR**841584****[Ma]**Michel Marias,*Eigenfunctions of the Laplacian on rotationally symmetric manifolds*, Trans. Amer. Math. Soc.**350**(1998), no. 11, 4367–4375. MR**1616007**, 10.1090/S0002-9947-98-02354-X

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
53C27,
58J50,
54A10

Retrieve articles in all journals with MSC (2000): 53C27, 58J50, 54A10

Additional Information

**N. Anghel**

Affiliation:
Department of Mathematics, University of North Texas, Denton, Texas 76203

Email:
anghel@unt.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-05-07947-5

Keywords:
$L^2$-harmonic forms,
rotationally symmetric Riemannian manifolds,
generalized Dirac operators,
separation of variables

Received by editor(s):
April 16, 2004

Published electronically:
March 17, 2005

Communicated by:
Jozef Dodziuk

Article copyright:
© Copyright 2005
American Mathematical Society