Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Space-time fractional derivative operators


Authors: Boris Baeumer, Mark M. Meerschaert and Jeff Mortensen
Journal: Proc. Amer. Math. Soc. 133 (2005), 2273-2282
MSC (2000): Primary 47G30; Secondary 60J60
DOI: https://doi.org/10.1090/S0002-9939-05-07949-9
Published electronically: March 14, 2005
MathSciNet review: 2138870
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Evolution equations for anomalous diffusion employ fractional derivatives in space and time. Linkage between the space-time variables leads to a new type of fractional derivative operator. This paper develops the mathematical foundations of those operators.


References [Enhancements On Off] (What's this?)

  • 1. W. Arendt, C. Batty, M. Hieber, and F. Neubrander, Vector-valued Laplace transforms and Cauchy problems. Monographs in Mathematics, Birkhaeuser-Verlag, Berlin (2001). MR 1886588 (2003g:47072)
  • 2. B. Baeumer and M. Merschaert, Stochastic solutions for fractional Cauchy problems. Frac. Calc. Appl. Anal. 4 (2001), 481-500. MR 1874479 (2003d:26006)
  • 3. P. Becker-Kern, M.M. Meerschaert and H.P. Scheffler, Limit theorems for coupled continuous time random walks. Ann. Probab. 32 (2004), No. 1B, 730-756. MR 2039941 (2004m:60092)
  • 4. D. Benson, S. Wheatcraft and M. Meerschaert, The fractional-order governing equation of Lévy motion. Water Resources Research 36 (2000), 1413-1424.
  • 5. A. Blumen, G. Zumofen and J. Klafter, Transport aspects in anomalous diffusion: Lévy walks. Phys Rev. A 40 (1989), 3964-3973.
  • 6. J.P. Bouchaud and A. Georges, Anomalous diffusion in disordered media - statistical mechanisms, models and physical applications, Phys. Rep. 195 (1990), 127-293. MR 1081295
  • 7. A. Chaves, A fractional diffusion equation to describe Lévy flights. Phys. Lett. A 239 (1998), 13-16. MR 1616103 (99a:82067)
  • 8. W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, 2nd Ed., Wiley, New York (1971). MR 0270403 (42:5292)
  • 9. B. Gnedenko and A. Kolmogorov, Limit Distributions for Sums of Independent Random Variables. Translated from the Russian, annotated, and revised by K. L. Chung. With appendices by J. L. Doob and P. L. Hsu. Revised edition, Addison-Wesley, Reading, Mass (1968). MR 0233400 (38:1722)
  • 10. R. Gorenflo, F. Mainardi, E. Scalas and M. Raberto, Fractional calculus and continuous-time finance. III. The diffusion limit. Mathematical finance (Konstanz, 2000), 171-180, Trends Math., Birkhäuser, Basel (2001). MR 1882830
  • 11. E. Hille and R.S. Phillips, Functional Analysis and Semi-Groups. Amer. Math. Soc. Coll. Publ. 31, American Mathematical Society, Providence (1957). MR 0089373 (19:664d)
  • 12. Z. Jurek and J.D. Mason, Operator-Limit Distributions in Probability Theory, Wiley, New York (1993). MR 1243181 (95b:60018)
  • 13. J. Klafter, A. Blumen and M.F. Shlesinger, Stochastic pathways to anomalous diffusion, Phys. Rev. A 35 (1987), 3081-3085. MR 0884309 (88d:82132)
  • 14. M.M. Meerschaert, D. Benson and B. Bäumer, Multidimensional advection and fractional dispersion. Phys. Rev. E 59 (1999), 5026-5028.
  • 15. M.M. Meerschaert and H.P. Scheffler,
    Limit Theorems for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. Wiley, New York (2001). MR 1840531 (2002i:60047)
  • 16. M.M. Meerschaert, D. Benson and B. Bäumer, Operator Lévy motion and multiscaling anomalous diffusion. Phys. Rev. E 63 (2001), 1112-1117.
  • 17. M.M. Meerschaert and H.P. Scheffler, Limit theorems for continuous time random walks with infinite mean waiting times. J. Appl. Probab. 41 (2004), No. 2, 455-466. MR 2052584
  • 18. M.M. Meerschaert, D.A. Benson, H.P. Scheffler and B. Baeumer, Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E 65 (2002), 1103-1106. MR 1917983 (2003d:60165)
  • 19. M.M. Meerschaert, D.A. Benson, H.P. Scheffler and P. Becker-Kern, Governing equations and solutions of anomalous random walk limits. Phys. Rev. E 66 (2002), 102-105.
  • 20. Metzler R. and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000), 1-77. MR 1809268 (2001k:82082)
  • 21. K.S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations. Wiley, New York (1993). MR 1219954 (94e:26013)
  • 22. E.W. Montroll and G.H. Weiss, Random walks on lattices. II. J. Mathematical Phys. 6 (1965), 167-181. MR 0172344 (30:2563)
  • 23. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential equations. Applied Mathematical Sciences 44, Springer-Verlag, New York (1983). MR 0710486 (85g:47061)
  • 24. M. Raberto, E. Scalas and F. Mainardi, Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 314 (2002), 749-755.
  • 25. L. Sabatelli, S. Keating, J. Dudley, P. Richmond, Waiting time distributions in financial markets. Eur. Phys. J B 27 (2002), 273-275. MR 1930869
  • 26. A.I. Saichev and G.M. Zaslavsky, Fractional kinetic equations: Solutions and applications. Chaos 7 (1997), 753-764. MR 1604710 (98k:82162)
  • 27. S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and derivatives: Theory and Applications. Gordon and Breach, London (1993). MR 1347689 (96d:26012)
  • 28. E. Scalas, R. Gorenflo and F. Mainardi, Fractional calculus and continuous-time finance. Phys. A 284 (2000), 376-384. MR 1773804 (2001d:91104)
  • 29. H. Scher and M. Lax, Stochastic transport in a disordered solid. I. Theory. Phys. Rev. B 7 (1973), 4491-4502. MR 0391854 (52:12673)
  • 30. V.V. Uchaikin and V.M. Zolotarev, Chance and stability. Stable distributions and their applications. VSP, Utrecht (1999). MR 1745764 (2002a:60002)
  • 31. G. Zaslavsky, Fractional kinetic equation for Hamiltonian chaos. Chaotic advection, tracer dynamics and turbulent dispersion. Phys. D 76 (1994), 110-122. MR 1295881 (95h:58120)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47G30, 60J60

Retrieve articles in all journals with MSC (2000): 47G30, 60J60


Additional Information

Boris Baeumer
Affiliation: Department of Mathematics & Statistics, University of Otago, Dunedin, New Zealand
Email: bbaeumer@maths.otago.ac.nz

Mark M. Meerschaert
Affiliation: Department of Physics, University of Nevada, Reno, Nevada 89557-0084
Address at time of publication: Department of Mathematics & Statistics, University of Otago, Dunedin, New Zealand
Email: mcubed@unr.edu, mcubed@maths.otago.ac.nz

Jeff Mortensen
Affiliation: Department of Mathematics, University of Nevada, Reno, Nevada 89557-0084
Email: jm@unr.edu

DOI: https://doi.org/10.1090/S0002-9939-05-07949-9
Keywords: Evolution equation, anomalous diffusion, fractional derivative
Received by editor(s): April 25, 2003
Published electronically: March 14, 2005
Additional Notes: The first author was partially supported by the Marsden fund, administered by the Royal Society of New Zealand
The second author was partially supported by NSF grants DMS-0139927 and DMS-0417869 as well as the Marsden fund, administered by the Royal Society of New Zealand
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society