Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Pointwise uniformly rotund norms


Author: Jan Rychtár
Journal: Proc. Amer. Math. Soc. 133 (2005), 2259-2266
MSC (2000): Primary 46B03, 46B26, 46E05
DOI: https://doi.org/10.1090/S0002-9939-05-07984-0
Published electronically: March 4, 2005
MathSciNet review: 2138868
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that some properties of compact spaces $K$, such as carrying a strictly positive measure or being descriptive, are closely related to renormings of $C(K)$ or $C(K)^*$, respectively, by pointwise uniformly rotund norms.


References [Enhancements On Off] (What's this?)

  • 1. S. Argyros, V. Farmaki: On the structure of weakly compact subsets of Hilbert spaces and application to the geometry of Banach spaces, Trans. Amer. Math. Soc. 289 (1985), 409-427. MR 0779073 (86h:46023)
  • 2. D. Amir and J. Lindenstrauss: The structure of weakly compact sets in Banach spaces, Ann. of Math. (2) 88 (1968), 35-46. MR 0228983 (37:4562)
  • 3. Y. Benyamini and T. Starbird: Embedding weakly compact sets into Hilbert space, Israel J. Math. 23 (1976), no. 2, 137-141. MR 0397372 (53:1231)
  • 4. W. W. Comfort and S. Negrepontis: Chain conditions in Topology, Cambridge Tracts in Mathematics 79, Cambridge University Press, 1982. MR 0665100 (84k:04002)
  • 5. R. Deville, G. Godefroy and V. Zizler: Smoothness and renormings in Banach spaces, Monographs and Surveys in Pure and Applied Mathematics 64, Pitman, 1993. MR 1211634 (94d:46012)
  • 6. S. J. Dilworth, D. Kutzarova and S. L. Troyanski: On some uniform geometric properties in function spaces, General topology in Banach spaces, 127-135, Nova Sci. Publ., Huntington, NY, 2001. MR 1901540 (2003e:46035)
  • 7. M. Fabian: Gâteaux differentiability of convex functions and topology. Weak Asplund spaces. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York, 1997 MR 1461271 (98h:46009)
  • 8. M. Fabian, G. Godefroy and V. Zizler: The structure of uniformly Gâteaux smooth Banach spaces, Israel J. Math. 124 (2001), 243-252. MR 1856517 (2002g:46015)
  • 9. M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant and V. Zizler: Functional analysis and infinite dimensional geometry, Canadian Math. Soc. Books (Springer-Verlag), 2001. MR 1831176 (2002f:46001)
  • 10. M. Fabian, V. Montesinos and V. Zizler: Biorthogonal systems in weakly Lindelöf spaces, submitted.
  • 11. R. Haydon: Trees in renorming theory, Proc. London Math. Soc. (3) 78 (1999), 541-584. MR 1674838 (2000d:46011)
  • 12. K. John and V. Zizler: Smoothness and its equivalence in weakly compactly generated Banach spaces, J. Funct. Anal. 15 (1974), 161-166. MR 0417759 (54:5807)
  • 13. D. N. Kutzarova: On an equivalent norm in $L_1$which is uniformly convex in every direction, Constructive Theory of Functions, Sofia 84 (1984), 507-512.
  • 14. D. N. Kutzarova and S. L. Troyanski: Reflexive Banach spaces without equivalent norms which are uniformly convex or uniformly differentiable in every direction, Studia Math. 72 (1982), no. 1, 91-95. MR 0665893 (83k:46024)
  • 15. H. E. Lacey: The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208. Springer-Verlag, New York-Heidelberg, 1974. MR 0493279 (58:12308)
  • 16. I. Namioka: Fragmentability in Banach spaces. Interaction of topologies, Lecture Notes, Paseky School, Czech Republic (1999).
  • 17. H. P. Rosenthal: On injective Banach spaces and the spaces $L^\infty(\mu)$ for finite measures $\mu$, Acta Math. 124 (1970), 205-248. MR 0257721 (41:2370)
  • 18. M. Raja: Weak$^*$ locally uniformly rotund norms and descriptive compact spaces, J. of Functional Analysis 197 (2003), 1-13. MR 1957673 (2004a:46009)
  • 19. J. Rychtár: Renorming of $C(K)$ spaces, Proc. Amer. Math. Soc., 131 (2003), no. 7, 2063-2070 (electronic). MR 1963751 (2004b:46018)
  • 20. M. A. Smith: Banach spaces that are uniformly rotund in weakly compact sets of directions, Can. J. Math. 29, No. 5 (1977), 963-970. MR 0450942 (56:9232)
  • 21. S. Todorcevic: Compact subsets of the first Baire class, J. Amer. Math. Soc. 12 (1999), no. 4, 1179-1212. MR 1685782 (2000d:54028)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46B03, 46B26, 46E05

Retrieve articles in all journals with MSC (2000): 46B03, 46B26, 46E05


Additional Information

Jan Rychtár
Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Address at time of publication: Department of Mathematical Sciences, University of North Carolina at Greensboro, Greensboro, North Carolina 27402
Email: jrychtar@math.ualberta.ca, rychtar@uncg.edu

DOI: https://doi.org/10.1090/S0002-9939-05-07984-0
Keywords: Pointwise uniformly rotund norm, strictly positive measure, uniform Eberlein compacts, descriptive compacts, fragmentability
Received by editor(s): March 25, 2003
Published electronically: March 4, 2005
Additional Notes: This research was supported by NSERC 7926, FS Chia Ph.D. Scholarship for 2002/2003 and GAUK 277/2001, written as part of the author’s Ph.D. thesis under the supervision of Professor N. Tomczak-Jaegermann and Professor V. Zizler
Communicated by: Jonathan M. Borwein
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society