Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Nonnegatively and positively curved invariant metrics on circle bundles

Authors: Krishnan Shankar, Kristopher Tapp and Wilderich Tuschmann
Journal: Proc. Amer. Math. Soc. 133 (2005), 2449-2459
MSC (2000): Primary 53C20
Published electronically: March 21, 2005
MathSciNet review: 2138888
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We derive and study necessary and sufficient conditions for an $S^1$-bundle to admit an invariant metric of positive or nonnegative sectional curvature. In case the total space has an invariant metric of nonnegative curvature and the base space is odd dimensional, we prove that the total space contains a flat totally geodesic immersed cylinder. We provide several examples, including a connection metric of nonnegative curvature on the trivial bundle $S^1\times S^3$ that is not a product metric.

References [Enhancements On Off] (What's this?)

  • 1. S. Aloff and N. Wallach, An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures, Bull. Amer. Math. Soc. 81 (1975) 93-97. MR 0370624 (51:6851)
  • 2. J. Cheeger, Some examples of manifolds of nonnegative curvature, J. Differential Geom. 8 (1972), 623-628. MR 0341334 (49:6085)
  • 3. J.-H. Eschenburg, Freie isometrische Aktionen auf kompakten Lie-Gruppen mit positiv gekrümmten Orbiträumen, Schriftenreihe des Mathematischen Instituts der Universität Münster (2) 32, Universität Münster, Mathematisches Institut, Münster, 1984. MR 0758252 (86a:53045)
  • 4. J.-H. Eschenburg, Inhomogeneous spaces of positive curvature, Differential Geom. Appl. 2 (1992), 123-132. MR 1245552 (94j:53044)
  • 5. K. Fukaya, T. Yamaguchi, The fundamental groups of almost non-negatively curved manifolds, Ann. of Math. (2) 136 (1992), 253-333. MR 1185120 (93h:53041)
  • 6. P. Gilkey, J.H. Park, W. Tuschmann, Invariant metrics of positive Ricci curvature on principal bundles, Math. Z. 227 (1998), 455-463. MR 1612669 (2000b:53042)
  • 7. D. Gromoll and K. Tapp, Nonnegatively curved metrics on $S^2\times\mathbf{R}^2$, preprint.
  • 8. J. C. Nash, Positive Ricci curvature on fiber bundles, J. Diff. Geom. 14 (1979), 241-265. MR 0587552 (81k:53039)
  • 9. Y. T. Siu and S. T. Yau, Compact Kahler manifolds of positive bisectional curvature, Invent. Math. 59 (1980), 189-204. MR 0577360 (81h:58029)
  • 10. M. Strake and G. Walschap, Connection metrics of nonnegative curvature on vector bundles, Manuscripta Math. 66 (1990), 309-318. MR 1031200 (91a:53070)
  • 11. K. Tapp, Conditions for nonnegative curvature on vector bundles and sphere bundles, Duke Math J. 116 (2003), No. 1, 77-101. MR 1950480 (2004b:53045)
  • 12. G. Walschap, Nonnegatively curved manifolds with souls of dimension 2, J. Differential Geom. 27 (1988), 525-537. MR 0940117 (89g:53067)
  • 13. G. Walschap and M. Özaydin, Vector bundles with no soul, Proc. Amer. Math. Soc. 120 (1994), no. 2, 565-567. MR 1162091 (94d:53057)
  • 14. F. Warner, Extension of the Rauch comparison Theorem to submanifolds, Trans. A.M.S. 122 (1966), 341-356. MR 0200873 (34:759)
  • 15. A. Weinstein, Fat bundles and symplectic manifolds, Adv. in Math. 37 (1980), 239-250. MR 0591728 (82a:53038)
  • 16. B. Wilking, Manifolds with positive sectional curvature almost everywhere, Invent. Math. 148 (2002), 117-141. MR 1892845 (2003a:53049)
  • 17. D. Yang, On complete metrics of nonnegative curvature on 2-plane bundles, Pacific J. of Math., Vol. 171, No. 2, 1995. MR 1372245 (96k:53034)
  • 18. W. Ziller, Fatness Revisited, lecture notes, 1999.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C20

Retrieve articles in all journals with MSC (2000): 53C20

Additional Information

Krishnan Shankar
Affiliation: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019

Kristopher Tapp
Affiliation: Department of Mathematics, Bryn Mawr College, Philadelphia, Pennsylvania 19010

Wilderich Tuschmann
Affiliation: Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einstein- strasse 62, D-48149 Münster, Germany

Keywords: Nonnegative sectional curvature, principal circle bundles, connection metrics.
Received by editor(s): October 15, 2002
Received by editor(s) in revised form: April 14, 2003
Published electronically: March 21, 2005
Additional Notes: The first author was supported in part by NSF grant DMS–0103993.
The third author’s research was supported by a DFG Heisenberg Fellowship.
Communicated by: Wolfgang Ziller
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society