Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A purely algebraic characterization of the hyperreal numbers


Authors: Vieri Benci and Mauro Di Nasso
Journal: Proc. Amer. Math. Soc. 133 (2005), 2501-2505
MSC (2000): Primary 16S60, 54C40, 26E35
DOI: https://doi.org/10.1090/S0002-9939-05-07429-0
Published electronically: April 19, 2005
MathSciNet review: 2146232
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The hyperreal numbers of nonstandard analysis are characterized in purely algebraic terms as homomorphic images of a suitable class of rings of functions.


References [Enhancements On Off] (What's this?)

  • 1. M.Y. Antonovskij, D.V. Chudnovsky, G.V. Chudnovsky and E. Hewitt, Rings of real-valued continuous functions. II, Math. Z. 176 (1981), 151-186. MR 0607959 (83f:54011)
  • 2. V. Benci and M. Di Nasso, A ring homomorphism is enough to get nonstandard analysis, Bull. Belg. Math. Soc. - S. Stevin 10 (2003), 481-490. MR 2040525 (2004k:16084)
  • 3. C.C. Chang and H.J. Keisler, Model Theory (3rd edition), North-Holland, 1990. MR 1059055 (91c:03026)
  • 4. G.L. Cherlin and M.A. Dickmann, Real closed rings I. Residue rings of rings of continuous functions, Fund. Math. 126 (1986), 147-183. MR R0843243 (87h:12001)
  • 5. H.G. Dales and W.H. Woodin, Super-real Fields, Oxford University Press, 1996. MR 1420859 (98b:12005)
  • 6. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, 1960. MR 0116199 (22:6994)
  • 7. E. Hewitt, Rings of real-valued continuous functions, Trans. Amer. Math. Soc. 64 (1948), 45-99. MR 0026239 (10,126e)
  • 8. H.J. Keisler, Foundations of Infinitesimal Calculus, Prindle, Weber & Schmidt, 1976.
  • 9. J.J. Moloney, Residue class domains of the ring of convergent sequences and of $C^\infty([0,1],\mathbb{R} )$, Pacific J. Math. 143 (1990), 79-153. MR 1047403 (91k:12009)
  • 10. J. Roitman, Non-isomorphic hyper-real fields from non-isomorphic ultrapowers, Math. Z. 181 (1982), 93-96. MR 0671717 (84a:54030)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 16S60, 54C40, 26E35

Retrieve articles in all journals with MSC (2000): 16S60, 54C40, 26E35


Additional Information

Vieri Benci
Affiliation: Dipartimento di Matematica Applicata “Ulisse Dini”, Università di Pisa, Pisa, Italy
Email: benci@dma.unipi.it

Mauro Di Nasso
Affiliation: Dipartimento di Matematica “Leonida Tonelli”, Università di Pisa, Pisa, Italy
Email: dinasso@dm.unipi.it

DOI: https://doi.org/10.1090/S0002-9939-05-07429-0
Keywords: Rings of functions, algebraic properties of functions spaces, nonstandard analysis
Received by editor(s): November 13, 2002
Received by editor(s) in revised form: July 11, 2003
Published electronically: April 19, 2005
Communicated by: Carl G. Jockusch, Jr.
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society